BLACK RIVER IMPOUNDMENT PROJECT – RLWD PROJECT #176

Preliminary Engineer's Report

October 10, 2017

Revised: November 16, 2017

Prepared on Behalf of: Red Lake Watershed District

By: Houston Engineering, Inc.

HoustonEngineering Inc.

Houston Engineering, Inc. 208 4th St. E Thief River Falls, MN 56701 I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision, and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota.

North

Tony A. Nordby License No. 51392

10-10-20

Date

TABLE OF CONTENTS

	TEC	CHNICAL MEMORANDUM (11-16-2017)1·	·17
1	INT	RODUCTION	1
	1.1	BACKGROUND	1
	1.2	LOCATION	1
		PURPOSE/FUNCTION	
		PROJECT DESCRIPTION	
	1.5	LAND OWNERSHIP AND LAND USE	3
2		TA SUMMARY	
	2.1	HYDROLOGY	4
	2.2	IMPOUNDMENT DESIGN	5
3		STING CONDITIONS	
		LAND USE	
		GEOLOGY AND SUBSURFACE SOILS	
		FISH, WILDLIFE, AND ECOLOGICALLY SENSITIVE RESOURCES	
		ENVIRONMENTAL REVIEW AND ASSESSMENTS	
		ARCHAEOLOGICAL RESOURCES	
		WATER QUALITY	
4		OPOSED PROJECT DESIGN	
		PRELIMINARY PROJECT DESIGN	-
		HYDROLOGY	
		HYDRAULIC DESIGN OF FLOOD CONTROL STRUCTURE	
		PROJECT PERFORMANCE/DOWNSTREAM BENEFITS	
		DAM DESIGN HAZARD CRITERIA AND CLASSIFICATION	
		RIGHT-OF-WAY	
		PROJECT OPERATION	
_			
5		MPATIBILITY WITH EXISTING PLANS	
		RLWD WATERSHED MANAGEMENT PLAN	
		RED RIVER WATERSHED MANAGEMENT BOARD RED RIVER BASIN FLOOD DAMAGE REDUCTION WORK GROUP AGREEMENT AND RED	
	5.3	LAKE WATERSHED DISTRICT PROJECT TEAM	
	5 A	PENNINGTON COUNTY COMPREHENSIVE LOCAL WATER PLANS	0
c		FERNINGTON COUNTY COMPREHENSIVE LOCAL WATER PLANS	
		ANCING AND RECOMMENDATIONS	
1			
		PROJECT FUNDING/FINANCING	
0			
8	KE	FERENCES	.22

FIGURES

Figure	01:	Project Location MapF	-01
Figure	02:	Alternative Site AF	-02
		Alternative Site BF	
Figure	04:	Alternative Site CF	-04
Figure	05:	Alternative Site DF	-05
Figure	06:	Selected Alternative and Project Overview MapF	-06
Figure	07:	Lands AffectedF	-07
Figure	08:	Soils MapF	-08
Figure	09:	Existing Wetland Inventory MapF	-09
Figure	10:	Project National Wetland Inventory MapF	-10
Figure	11:	Threatened and Endangered Species MapF	-11
Figure	12:	Flood Pool Surface Area vs. ElevationF	-12
Figure	13:	Flood Pool Storage vs. ElevationF	-13
Figure	14:	Spillway Discharge vs. ElevationF	-14
Figure	15:	Inflow/Outflow Principle Spillway HydrographsF	-15
Figure	16:	Inflow/Outflow Auxiliary Spillway HydrographsF	-16
Figure	17:	Flood Pool Elevation vs. Time for the Principle Spillway Storm EventF	-17
Figure	18:	Flood Pool Elevation vs. Time for the Auxiliary Spillway HydrographF	-18
Figure	19:	Proposed Design 10-Year – 24-Hour Inundation MapF	-19
Figure	20:	Proposed Design 25-Year – 24-Hour Inundation MapF	-20
Figure	21:	Proposed Design 100-Year – 24-Hour Inundation MapF	-21
Figure	22:	Downstream Flood Reduction MapF	-22
Figure	23:	Opinion of Probable CostF	-23

APPENDICES

Appendix A:	RRWMB Prioritization Worksheet
Appendix B:	STAR Value Computation
Appendix C:	MnDNR Environmental Review Need Determination
Appendix D:	Field Wetland Inventory Report (Proposed Impoundment Site)
Appendix E:	Aquatic Resource Delineation Report (Diversion Ditches)

Technical Memorandum

То:	Red River Watershed Management Board		
	(RRWMB)		
	Technical Advisory Committee (TAC)		
From:	Tony A. Nordby, PE		
	Houston Engineering, Inc.		
Subject:	RRWMB Step 2 Submittal – TAC Additional		
	Information Request		
Date:	November 16, 2017		

I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am duly Licensed Professional Engineer under the laws of the State of Minnesota.

-16-17 Dato TonvA Nordby Reg. No. 51392

Project: Black River Impoundment Project – Red Lake Watershed District (RLWD) Project #176

INTRODUCTION

This document is provided in response to the post RRWMB TAC meeting request for the Black River Impoundment Project email written by Henry Van Offelen, dated November 8, 2017. Information provided in this technical memorandum shall be considered an addendum to the Preliminary Engineer's Report Dated October 10, 2017.

Multiple requests were made by the TAC as result of their review and recommendations to the RRWMB for the Step 2 Submittal of the Black River Impoundment Project.

TECHNICIAL ADVISORY COMMITTEE REQUESTS

1. OPERATION PLAN WITH EXISTING DOWNSTREAM SCHIRRICK DAM

The primary operation of the proposed project will be for flood control. The intent of the operation will be to provide flow reductions downstream on the Black River, Red Lake River, and the Red River of the North. The hydrographs shown in <u>Figure 1</u> represents the 100-year 10-day spring runoff event at the Schirrick Dam with and without the Black River Impoundment project. These hydrographs were created with the Schirrick Dam gates open using the RLWD expanded distributed detention strategy HEC-HMS models, and inputting the 100-year 10-day spring runoff event. With the Black River Impoundment project in operation, the 100-year 10-day peak inflow at the Schirrick Dam decreases by approximately 480 cfs. The inflow rating curve in the Schirrick Dam Engineer's Report for flood gates open would suggest that the peak inflow reduction with the proposed Black River Impoundment Project in place, the water surface elevation of the Schirrick Dam pool would be lowered by approximately 1.5 feet, maintaining a water surface elevation below the Secondary Spillway and providing increased storage capacity potential.

The Black River Impoundment will be operated more frequently than the Schirrick Dam and will be operated based on upstream runoff. See section 4.8 Project Operation of the Engineer's Report for the preliminary operation of the Black River Impoundment. The Schirrick Dam operation is based on gauge triggers downstream and not related to the upstream runoff. The hydrographs in <u>Figure 1</u> also show that the ungated storage delay from the proposed Black River Impoundment won't have a negative effect on the operation of the Schirrick Dam, but should provide benefit as evident by the reduced inflows throughout the duration of all hydrograph conditions.

2. RED LAKE RIVER @ CROOKSTON

The hydrographs shown in <u>Figure 2</u> and <u>Figure 3</u> represent the 100-year 10-day runoff event for the Red Lake River @ Crookston with and without the Black River Impoundment Project in place and the Schirrick Dam gates open. These hydrographs were created using the RLWD expanded distributed detention strategy HEC-HMS models, and inputting the 100-year 10-day runoff event.

The Black River Impoundment project shows a 0.5% peak flow reduction on the Red Lake River @ Crookston for the 100-year 10-day runoff event. Historical documents state that during the 1997 flood event, the Schirrick Dam operation was thought to prevent parts of the City of Crookston from flooding. Considering the flood storage benefits provided from the proposed Black River Impoundment to the Schirrick Dam, it is reasonable to assume that a similar event such as the 1997 flood, would present even lower peak elevations in the City of Crookston.

3. GATED STORAGE INCREASE

Increasing the storage capabilities of the proposed Black River Impoundment site was reviewed. It was determined that the topography and project site characteristics will allow for an additional 1.5 feet of gated storage, while maintaining 3 feet of freeboard between the auxiliary spillway to the top of levee. See the proposed impoundment design below:

Embankment:

Top of Dam Elevation	1023.5
Top Width	12 ft.
Freeboard (Auxiliary Spillway Design Flood)	2.1 ft.
Interior Side Slopes	5:1
Exterior Side Slopes	4:1
Principal Spillway: Type: 60" RCP with Two-Way Reinforced Concrete Riser	
Flowline @ Inlet	1003.0
Riser Crest Elevation	1019.0
Auxiliary Spillway: Type: 500-foot excavated earthen spillway	
Crest Elevation	1020.5

Storage:	2 402 A E (2 52 inches)
Gated, to Elev. 1019.0	3,162 A-F (3.53 inches)
Temporary, Elev. 1019.0 to Elev. 1020.5 (Auxiliary Spillway)	902 A-F (1.01 inches)
Total Storage (Gated & Ungated To Auxiliary Spillway)	4,064 A-F (4.54 inches)
Principal Spillway (Riser Crest) Design Flood:	
Initial Water Surface Elevation	1019.00
Maximum Water Surface Elevation	1020.27
Auxiliary Spillway Design Flood:	
Initial Water Surface Elevation	1019.00
Maximum Water Surface Elevation	1021.40
Freeboard (Top of Dam) Design Flood:	
Initial Water Surface Elevation	1019.00
Maximum Water Surface Elevation	1021.57

Technical Release No. 60, "Earth Dams and Reservoirs" (TR-60)^[3] Note: All elevations in this report are given in North American Vertical Datum of 1988 (NAVD 88)

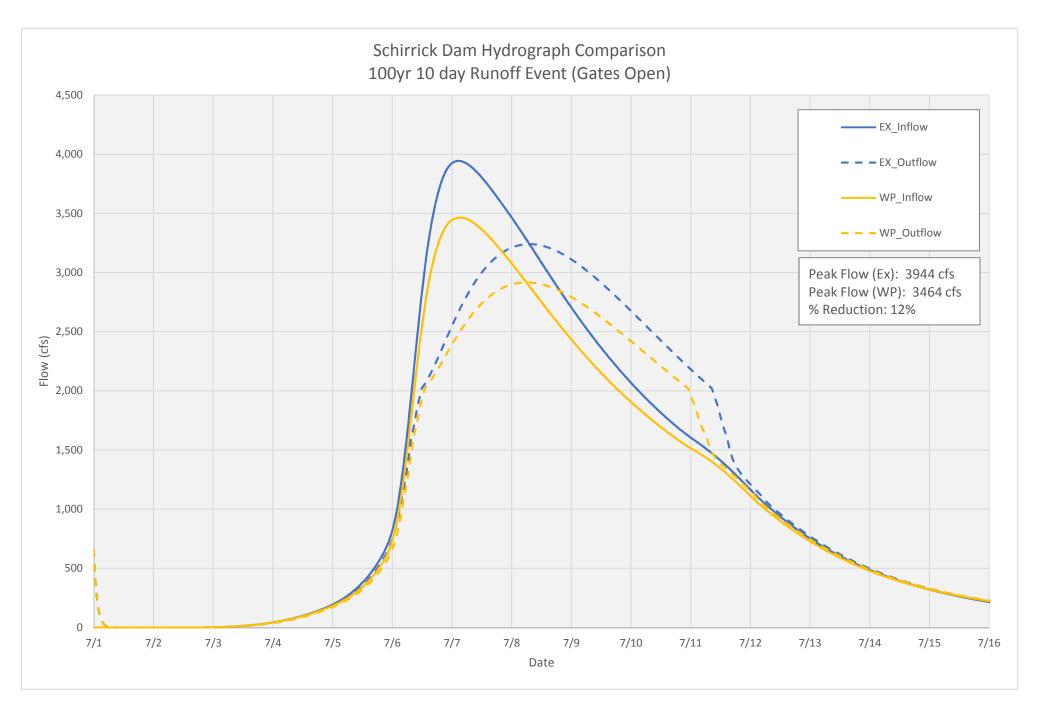
4. DIVERSION DITCHES

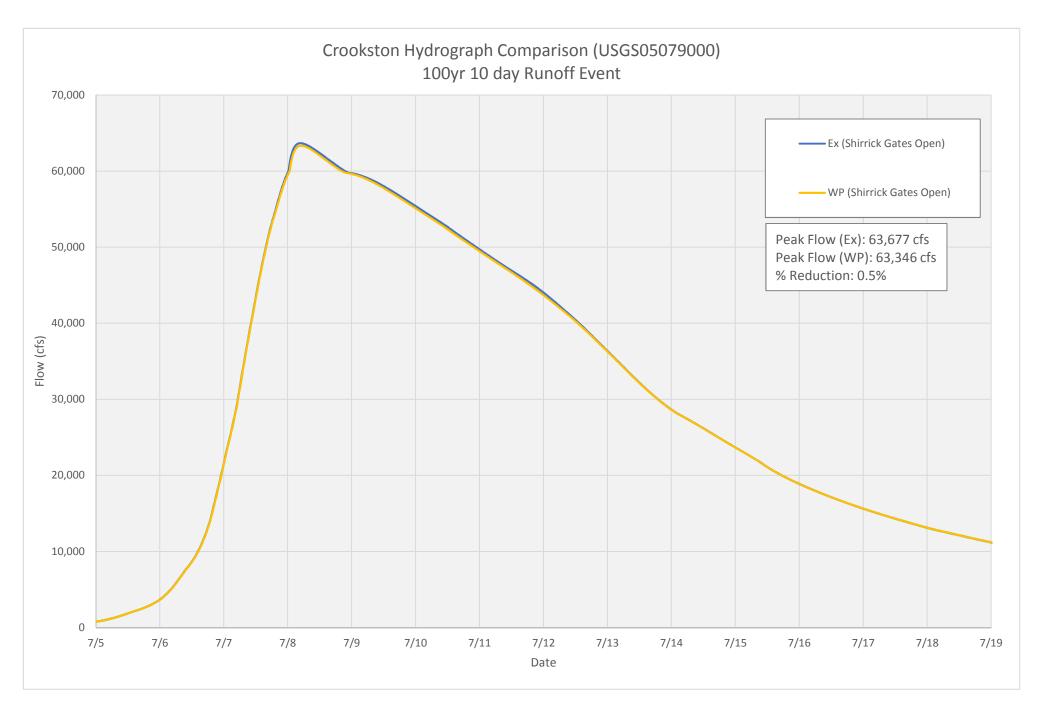
The primary purpose of the proposed diversion ditches is to maximize the potential drainage area and divert upstream runoff to the impoundment site that would otherwise bypass the site through existing coulees or road ditches. In total, three inlet channels, a 2.5 mile north-south diversion ditch along County Road (CR) 68, a combination of a 1.5 mile east-west diversion ditch along the northside of CSAH 3 and a 4 mile north-south diversion ditch along CSAH 12, and a 3.7 mile east-west diversion ditch along CR 55 will be constructed to conveying water to the site.

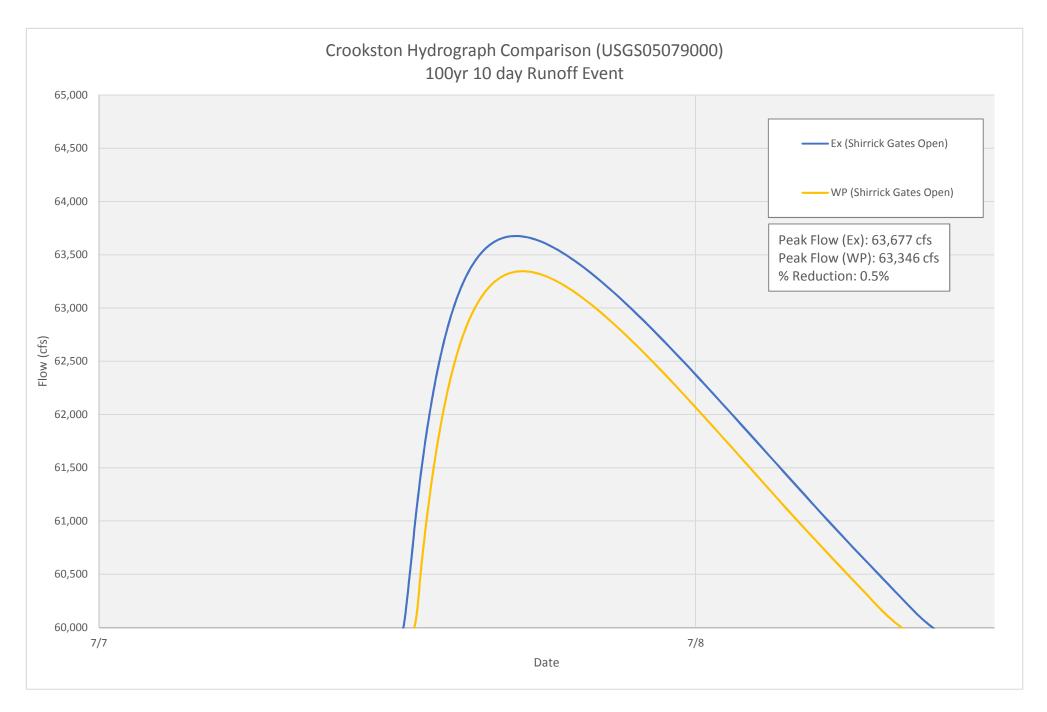
The 2.5 mile north-south diversion ditch along County Road (CR) 68 maximizes the northwest drainage area boundary diverting water to the proposed impoundment site that would otherwise bypass the site through coulees in Section 35 of Bray Township. Constructing this proposed diversion ditch is significant in order to optimize flood storage at the impoundment site.

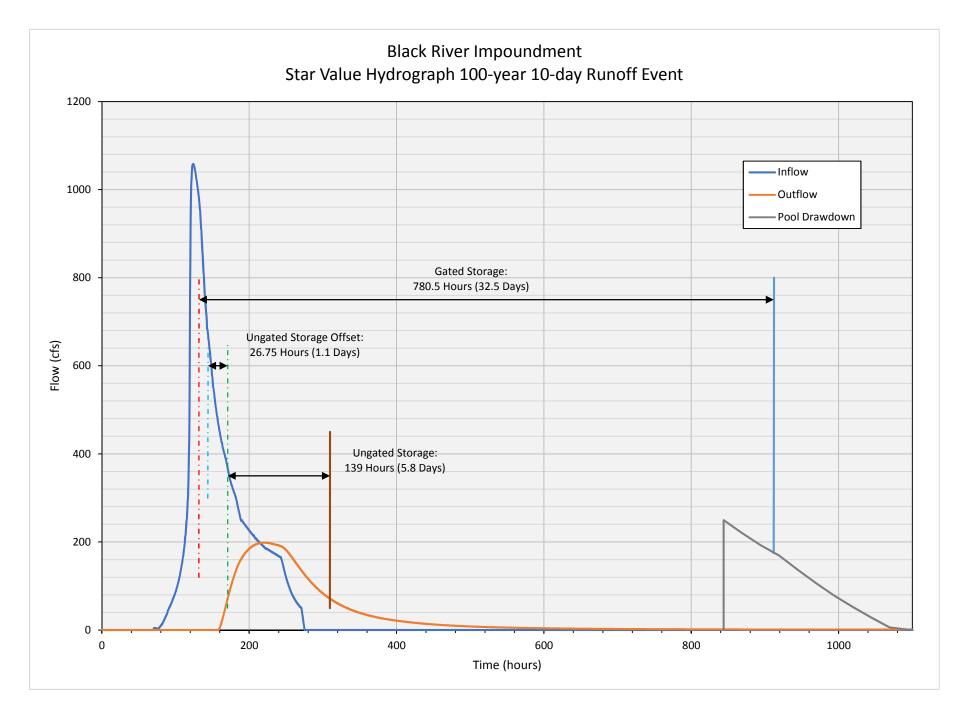
The 1.5 mile diversion ditch proposed from the impoundment site east along CSAH 3 and 4 miles north along CSAH 12 was added as part of the project to capture an additional 2.4 square miles of drainage area to the north in Sections 8, 17, and 18 of Sanders Township. This ditch will divert water to the proposed impoundment site that would otherwise bypass the site northwest through Sections 10, 11, 13, 14, and 15 of Bray Township where flooding and poor drainage has been documented and identified at landowner and project work team meetings.

The 3.7 mile east-west diversion ditch along CR 55 proposed will divert runoff from the southern drainage boundaries into the impoundment site. A shallow road ditch exists along the north side of CR 55 where the diversion ditch is being proposed, but water currently flows south through CR 55 in the south west corner of Section 2 of Polk Centre Township bypassing the proposed impoundment site. The proposed diversion ditch will direct this flow into the impoundment site instead of continuing south through CR 55. There has also been history of CR 55 overtopping along Section 2 of Polk Centre Township. The proposed ditch will decrease the frequency of overtopping on CR 55 and contain water within the project drainage area optimizing the flood storage capacity of the impoundment site.


5. STAR VALUE CALCULATIONS AND PROJECT ASSESSMENT WORKSHEET


See <u>Figure 4</u> through <u>Figure 6</u> for the updated STar Value Hydrograph, Calculations and the Project Assessment Worksheet.


By increasing the gated storage, the STar Value of the Black River Impoundment Project increases to 90,554. Assuming a total project costs of \$7.1 million, the Red River Watershed Board cost per STar Value will be approximately \$26.14. This corresponds to approximately \$18.38/STar Value in year 2000 dollars.


CONCLUSION

All hydrographs, maps, and figures showing results from operation of the Black River Impoundment provided in this technical memorandum include the increased storage that is outlined in Section 3, "Gated Storage Increase." The preliminary design and information available finds that the project is feasible and provides benefit upstream and downstream from the project site.

nputation V	Vorksheet		Enter va	lues only in	the cells the	at have
Red River Watershed Management Board						are
			compute	d from these	e values.	1
		-				
	oundment	Step 2				
						ict.
Polk Centre To	wnship		Enter Pr	oject Locatio	on.	
\$ 7,100,000			Enter the	e estimated	proiect cos	ts.
\$ 2,366,667	CPI (1984=100)	CPI (2017=100)				
2017	244.82	100.00				dex read
2000	172.20	70.34	from the	CPI worksh	eet.	
16.8	Enter the draina	ge area in square	miles used t	o compute t	he runoff vo	olume.
Aara faat	Inches		The adju	isted storage	e is total sto	orage is
		. ,	multiplie			
-		-	which ca			
4,064	4.54	3,902		Ű	1	1
0.96	162					
	-					
	0	0	Note: this section is provided for reference only. The values are not used in the			
						n the
			calculati	0113.		
		0				
Average Detenti	on Time (days)	not applicable		û.	n	-
32.5	Enter gated det	ention time for the	1st category	of gated sto	orage.	
0.0	Enter gated det	ention time for the	2nd categor	y of gated st	orage.	
5.8	0	(,	
1.1	Offset of center	of mass of inflow h	ydrogragh t	o center of r	nass of sto	rage.
			Existing	Relative T is	s based on	the average
	Evicting					•
			flows an	d the RRN.		
1.0	Relative i	0.07				
Routed	Adj. Storage					
Relative T						
29.57	0		Routed r	elative T is	the value of	fthe
20.01			detentio	n times com	puted using	the
27.21	3,162	86,032				•
	,	-	regressi	•	s given in fi	gure 3. The
27.21	,	0	regressi Existing	Relative T is	s given in fi	gure 3. The
27.21 0.00	0 740	0 4,522	regressi Existing	Relative T is Relative T.	s given in fi	gure 3. The
27.21 0.00	0	0 4,522	regression Existing project F	Relative T is Relative T.	s given in fi	gure 3. The
27.21 0.00	0 740	0 4,522 90,554	regression Existing project F	Relative T is Relative T.	s given in fi	gure 3. The
27.21 0.00	0 740 3,902	0 4,522 90,554	regression Existing project F STAR V	Relative T is Relative T.	s given in fi s subtracted	gure 3. The
27.21 0.00	0 740 3,902 2017 dollars \$ 78.41	0 4,522 90,554 2000 dollars \$ 55.15	Total Co	Relative T is Relative T. ALUE st divided b	s given in fi s subtracted y STAR Val	gure 3. The d from the
27.21 0.00	0 740 3,902 2017 dollars \$ 78.41	0 4,522 90,554 2000 dollars \$ 55.15	Total Co	Relative T is Relative T. ALUE	s given in fi s subtracted y STAR Val	gure 3. The d from the
27.21 0.00 6.11	0 740 3,902 2017 dollars \$ 78.41	0 4,522 90,554 2000 dollars \$ 55.15 \$ 18.38	Total Co RRWME	Relative T is Relative T. ALUE st divided b	y STAR Val	gure 3. The d from the
27.21 0.00 6.11	0 740 3,902 2017 dollars \$ 78.41 \$ 26.14 puston Engineeri	0 4,522 90,554 2000 dollars \$ 55.15 \$ 18.38	Total Co RRWME	Relative T is Relative T. ALUE st divided but Cost divide	y STAR Val	gure 3. The d from the
	Hed Manag Black River Imo Red Lake Polk Centre Tor \$ 7,100,000 \$ 2,366,667 2017 2000 \$ 2,366,667 2000 16.8 Acre-feet 0 31,162 0 902 4,064 0 902 4,064 0 902 4,064 0.902 4,064 0.902 4,064 0.902 4,064 0.902 4,064 0.902 4,064 0.902 903 812 Average Discharge in AF Average Detenti 32.5 0.00 5.8 1.10 Routed	Black River Imoundment Red Lake Polk Centre Township S 7,100,000 \$ 2,366,667 CPI (1984=100) 2017 244.82 2000 172.20 16.8 Enter the drains Acre-feet Inchess 0 0.00 3,162 3.53 0 0.000 3,162 3.53 0 0.000 902 1.01 4,064 4.54 0 902 1.01 4,064 4.54 0 902 0 902 0 0 812 Average Discharge (cfs) Discharge in AF per day Average Detention Time (days) Average Detention Time (days) 32.5 Enter ungated det 5.8 Enter ungated det 5.8 Enter ungated det 5.8 Enter ungated det 5.8 Enter ungated det Adj. Storage	And a constraint of the second seco	hed Management Board Deen sh. compute compute Black River Imoundment Step 2 Enter Proceed to the state of the state	hed Management Board Deen snaded, All of computed from thesi opputed from thesi employed from thesite state Black River Imoundment Step 2 Enter Project Name. Red Lake Enter Name of Wate Polk Centre Township Enter Project Location \$ 7,100,000 Enter Project Location \$ 2,366,667 CPI (1984=100) CPI (2017=100) 2000 172.20 70.34 16.8 Enter the drainage area in square miles used to compute the opposite of the Consul from the CPI worksh Acre-feet Inchesis 0 0.00 0 0.	Hed Management Board Deen shaded. All other Values. Black River Imoundment Step 2 Enter Project Name. (Status eg Red Lake Enter Project Name. (Status eg Polk Centre Township S 7,100,000 Enter Project Location. S 7,100,000 Enter Project Location. S 7,100,000 Enter the estimated project cost S 2,366,667 CPI (1984=100) 2017 244.82 16.8 Enter the drainage area in square miles used to compute the runoff volues. Acre-feet Inches Adj. Storage (ac-ft) The adjusted storage is total str multiplied by the Volume Adjust which can reduce the storage. 0 0.00 3,162 3.53 3,162 3.53 902 1.01 740 740 4,064 4.54 902 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RED RIVER WATERSHED MANAGEMENT BOARD EVALUATION WORKSHEET for FLOOD DAMAGE REDUCTION PROJECTS

This worksheet shall be used by Member Watershed Districts in determining the initial feasibility of pursuing a potential site for project development and the District shall provide a completed worksheet for the proposed project's Step I application and a revised worksheet for Step II and Step III applications. The RRWMB shall utilize this form in determining the funding of each proposed project. In addition, the RRWMB and the sponsoring Watershed District shall utilize the Technical Advisory Committee (TAC) recommendation which will include the established "Star Value Method" in making project comparisons. When a proposed project has received Step III approval, the score shall be final. Individual component issues of each project are to be evaluated by using both technical and established policy considerations as adopted in the "Governing Documents" publication.

This document is divided into four separate sections. Each section shall be evaluated individually as deemed appropriate for each proposed flood damage reduction project and collectively in determining the final evaluation for funding from the RRWMB.

SECTION I - ENVIRONMENTAL ENHANCEMENTS ACCOMPLISHED

A. This proposed project has addressed the following natural resource goals as identified in the "Red River Basin Flood Damage Reduction Work Group Agreement" and incorporated the appropriate goal issues into the final engineer's report. Each goal, if incorporated into the final design, shall have an equal value of 2.5. The accumulative value of each goal accomplished in this project shall be the total score for this section.

This section shall be completed by the Watershed District Project Team.

Check each goal that has been incorporated into this project with an X.

- <u>X</u>1. Manage streams for natural characteristics.
- <u>X</u>2. Enhance riparian and/or in-stream habitat.
- X_3. Provide diversity of habitats for stable populations to thrive over a long period.

- ____4. Provide connected, integrated habitat including compatible adjacent land uses.
- <u>X</u>5. Enhance or provide seasonal flow regimes in streams for water supply, water quality, recreation, and support biotic communities.
- <u>X</u>6. Provide recreational opportunities.
- <u>X</u> 7. Improve water quality.
- <u>X</u>8. Protect water quality.
- 9. Manage lakes for natural characteristics.

The total score for this category is <u>17.5</u>.

The recommended minimum score for this category is 10.

B. WATERSHED DISTRICT'S PROJECT TEAM RECOMMENDATION

The Watershed District's Project Team has fully processed the proposed project through problem identification, alternative evaluation and selection and recommends the following:

- 0. The proposed project is not a significant contribution to flood damage reduction.
- 7. The proposed project will provide significant flood damage reduction, but a different alternative should be given further consideration.
- 14. The proposed project is significant but immediate implementation is not a high priority.
- 20. The proposed project is very significant and should be implemented at the earliest possible date.

Number <u>20</u> best describes the Project Team recommendation.

The recommended minimum score for this category is 14.

SECTION II - TECHNICAL ADVISORY COMMITTEE RECOMMENDATION

The TAC recommendation shall include the utilization of the "Star Value Method" to determine the RRWMB cost of the storage capability of the proposed project. In addition, the TAC shall provide a written technical narrative providing recommendations and suggestions for changes that would enhance the proposed project and/or an evaluation of the merits of the proposed project in fulfilling the flood damage reduction goals of the RRWMB.

A number of factors determine the effectiveness of a project in reducing flood flows on the Red River mainstem. When implementing individual projects, it is necessary to know how water from any given area will affect downstream flooding. Flooding along the Red River mainstem is substantially affected by runoff timing and volume from upstream areas. Will the peak runoff arrive ahead of, coincident with, or after downstream flood peaks? The design and operating goal should be to store water that would otherwise contribute to downstream flood peaks and to avoid causing damages during the subsequent release of the stored floodwater.

The Flood Damage Reduction Work Group's Technical Paper No. 11 has defined early, middle and late runoff areas within the basin relative to the downstream limit of the Red River Basin in Minnesota at the U.S./Canada border. In relation to maximizing downstream benefits, impoundments are most effectively located in the middle and late areas of the basin. Impoundments located in a late area should be designed to store the early water on the rising limb of the local hydrograph to help reduce mainstem peak flows. Impoundments located in a middle area should be designed to store the peak of the local hydrograph. Impoundments located in the early areas of the basin may also be beneficial to the mainstem if they are designed to store the falling limb of the local hydrograph. This would usually require either a very high capacity storage site to store all the floodwater, or a high capacity gate that can pass the early flows and be closed to store the late flows.

The designed storage volume of a proposed project affects the potential effectiveness in reducing flood flows on the Red River mainstem. Basically, the more volume of floodwater a project can store, the easier it is to operate the structure to optimize storage timing and releases in relation to downstream flooding.

The detention time a project can achieve affects the potential effectiveness in reducing flood flows on the Red River mainstem. Flooding on the mainstem is typically a long-term event, up to and exceeding 30 days for spring flood events. It is imperative that a project be designed to have the capability to store flood volumes for long periods of time so that releases will not add to or prolong flooding downstream.

The Star Value Method is intended to provide a method for the RRWMB to assign a relative value to a floodwater detention project in achieving the goal of reducing peak mainstem flows. It incorporates the factors listed above, is based on parameters that can be determined during early stages of project development and can be kept current as the project moves through various funding steps. The method assigns a value for floodwater detention to a project based on the amount of floodwater storage the project provides and on the length of time it is stored. Storage is adjusted based on reducing the total storage a project provides in excess of 3.6 inches. The length of time the floodwater is stored is adjusted based on the timing of the project watershed's contribution to the Red River peak flow. The difference between the post-project condition and the pre-project condition is the basis for the calculations. The method strongly favors projects designed and operated to achieve relatively long detention times.

The value system utilized to determine the ranking score for potential projects is:

Score	RRWMB Dollar Cost/Star Value
6	>20
10	15.1 to 20
16	10.1 to 15
18	5 to 10
20	0 to 5

The Star Value Method ranking score for this category is: <u>10</u>

The recommended minimum score for this category is 10.

A score lower than 10 in this section shall cause a Step III application to be returned to the applicant with the reason for rejection and a recommendation for correction before being submitted for funding at a future date. The technical evaluation narrative and recommendation for this proposed project is as follows:

SECTION III - PROJECT FUNDING AGREEMENT CONDITIONS

This section is to be utilized by the Watershed District's Board of Managers as a guide in seeking the appropriate level of funding for a proposed project and by the RRWMB in determining the level of funding to be awarded. Utilize and fill out only <u>one</u> of the three prioritizing schedules (*) that best applies to the proposed project. Note: "Other interests" means funds received from sources other than RRWMB tax levy that are secured to reduce the RRWMB/WD total commitment.

- * The proposed project provides flood damage reduction solely within a minor watershed of the District and funding will be requested from the RRWMB for:
- 2. Seventy-five percent of the total cost not funded by other interests.
- 3. Sixty-seven percent of the total cost not funded by other interests.
- 4. Fifty percent of the total cost not funded by other interests.
- 6. Twenty-five percent of the total cost not funded by other interests.
 - * The proposed project provides flood damage reduction downstream to the outlet into the Red River and funding will be requested from the RRWMB for:
- 10. Seventy-five percent of the total cost not funded by other interests.
- 12. Sixty-seven percent of the total cost not funded by other interests.
- 14. Fifty percent of the total cost not funded by other interests.

- 18. Twenty-five percent of the total cost not funded by other interests.
 - * The proposed project provides flood damage reduction downstream to the common outlet into the Red River from all contributing Minnesota watersheds and funding will be requested from the RRWMB for:
- 12. Seventy-five percent of the total cost not funded by other interests.
- 14. Sixty-seven percent of the total cost not funded by other interests.
- 16. Fifty percent of the total cost not funded by other interests.
- 20. Twenty-five percent of the total cost not funded by other interests.

Number <u>14 (67% 3rd Section)</u> best describes this proposed

project.

The recommended minimum score for this category is 14.

SECTION IV

Section IV is composed of three separate issue-orientated papers. Use form A when it is requested by the RRWMB. Use form B when applying for funding of programs or studies. Use form C for all applications for funding assistance.

A. QUALIFICATIONS FOR A FUNDING APPLICATION

*This section shall be utilized only by the RRWMB in the event that the adopted rating system in sections I-III has resulted in an equal comparative scoring value for projects proposed for funding. This section is not to be utilized by an applicant for funding.

Rationale shall be provided in letter form by the applicant, upon receiving a request from the RRWMB, stating the need for funding assistance which could be described as one of the following:

- The District Construction Account (1/2 RRWMB Levy) has adequate funds but the District feels it is entitled to funds because of prior annual levy allocations.
- The District Construction Account has adequate funds but they are needed for other project development costs. (Must list proposed projects and time line for progressing.)

- The District Construction Account is minimal because of low annual levy receipts.
- The District Construction Account is minimal because of funding previously built flood damage reduction projects. (Must list projects built and funding expenditures.)

B. PRIORITIZATION PROCESS FOR CONSIDERING PROGRAMS AND STUDIES

Consideration for the funding of Programs, Studies or other Flood Damage Reduction Initiatives by Member Watershed Districts shall be ranked for funding eligibility in the following order of priority. The lowest ranking shall be #1 and the highest #7.

- 1. The initiative is not related to gaining information toward flood damage reduction.
- 2. The information sought in this initiative is primarily for state or federal agency use, but is needed for gaining information related to flood damage reduction.
- 3. The information sought in this initiative is primarily for use in the applicant District.
- 4. The information sought in this initiative is needed by an individual District for their own use, but could be a pilot for establishing a methodology that could be used by all.
- 5. The information sought in this initiative will be conducted within an individual District, but the information gained can be utilized by all.
- 6. The information sought in this initiative is being gathered in all cooperating Districts and the information gained is necessary for furthering flood damage reduction initiatives.
- 7. The information sought in this initiative will be applicable to, and utilized in, all member Districts and is essential for the development of flood damage reduction initiatives within all of the Minnesota portion of the Red River basin.

Number <u>7</u> best describes this proposal.

The recommended minimum score for this category is 4.

C. DISTRICT BOARD OF MANAGER'S RECOMMENDATION

The <u>Red Lake</u> Watershed District's

Board of Managers have utilized the "Project Evaluation Worksheet" in

progressing this proposed project and request funding from the RRWMB

for <u>67%</u> percent of the project's total cost not funded by other sources for

an estimated amount of \$_____. It is anticipated that

construction can be accomplished and therefore funding will be required in:

1. Three to five years.

- 2. Two to three years.
- 3. One to two years.
- 4. Within one year.

This worksheet has been completed for the proposed project known as

Lake	Watershed Distri	ct
of	, 20	
	<u>l Lake</u> of	

* Note: The RRWMB shall provide the applicant with a signed form certifying the commitment and shall describe any variation from the "Project Evaluation Worksheet."

1 INTRODUCTION

This report has been prepared at the direction of the Board of Managers of the Red Lake Watershed District (RLWD) to summarize the preliminary design and benefits of constructing a flood management impoundment within the Black River Sub-watershed in the RLWD. The Black River Flood Impoundment Project (Project) is proposed to regulate flood waters from a 16.8 square mile drainage area contributing to the Black River, which is a tributary of the Red Lake River in the Red River Basin.

1.1 BACKGROUND

The Red River Watershed Management Board (RRWMB) funded a comprehensive plan for expanded distributed detention strategies for Minnesota membered watershed districts throughout the Red River Basin. This plan is summarized in the Red River Basin Commission's (RRBC) Long Term Flood Solutions (LTFS) Basin Wide Flow Reduction Strategy Report^[4], and it concluded with a goal to reduce the Red River of the North (Red River) peak flow and volume by 20% during a flooding event comparable to the 1997 flood. To accomplish this, the report set forth guidelines while working with each of the watersheds to develop district specific strategies.

The Red Lake Watershed District's Expanded Distributed Detention Strategy^[5] recommended 58 locations of off channel retention and 8 locations of on channel retention to help achieve the goals set forth in the RRBC LTFS Basin Wide Flow Reduction Strategy Report. The Black River Sub-Watershed encompasses several of the identified 58 locations. The Location map displayed in <u>Figure 1</u> shows where the Black River Sub-Watershed lies within the RLWD. To begin the development of a flood control impoundment project, the RLWD investigated preliminary alternatives for the Black River sub-watershed. Four preliminary impoundment site alternatives were reviewed, and are shown as alternatives A through D in <u>Figures 2-5</u>. With cooperation from local landowners, privately owned agricultural lands were made available by either fee title or permanent flowage easements. For this reason, Alternative A was selected to carry forward. The RLWD board subsequently appointed Houston Engineering, Inc. to proceed with further engineering investigation of Alternative A.

1.2 LOCATION

The Black River Impoundment Project is proposed to be located approximately 9 miles west of the City of St. Hilaire, Minnesota in Polk Centre Township of Pennington County, Minnesota. As shown on Figure 6, the site resides on the southerly property immediately adjacent to Pennington County Highway 3 (CSAH 3), just east of the Black River. Currently, most of the projects northerly drainage area flows westward through coulees that directly outlet into the Black River upstream of the project site. The southerly drainage area flows southwest, discharging into the Black River south of the proposed impoundment site. Therefore; multiple diversion ditches will be constructed as part of the project to capture and maximize the drainage area of the proposed impoundment site. In total, three inlet channels, a 2.5 mile north-south diversion ditch along County Road (CR) 68, a 4 mile north-south diversion ditch along CSAH 12, and a 3.7 mile east-west diversion ditch will be constructed along CR 55 to conveying water to the site and an outlet channel approximately 0.5 mile east-west will be constructed to convey water from the site to the Black River. Downstream of the Project, the Black River converges with the Red Lake River approximately 14.5 miles downstream of this proposed project site. The Red Lake River then drains approximately 50 miles to the Red River.

1.3 PURPOSE/FUNCTION

The primary purpose for the project is to reduce flood damages within the Black River sub-watershed. Reducing peak flows will reduce risk of flood damage to local public transportation facilities, erosion of agricultural and private lands upstream and downstream of the storage facility, and improve the operation efficiency of the downstream Schirrick Dam on the Black River, improve hydrologic conditions within the sub-watershed, and improve water quality. The Red Lake River Watershed Restoration and Protection Strategy (WRAPS) Report^[10] indicates that dissolved oxygen is a stressor identified in the impairment of the Black River due to a lack of base flow during dry portions of the summer months. The project has the capability of storing peak flows and ability to strategically release those flows over an extended period of time once peaks downstream have subsided. The project will provide a longer duration of base flows, improving the Black Rivers dissolved oxygen impairment. Collection and storage of peak flows from the project drainage area will aid towards addressing the 20% flood damage reduction goals set on the Red River by the RRBC and RRWMB.

An off-channel flood control reservoir will be constructed to store floodwaters from the 16.8 \pm square mile drainage area and strategically release the floodwater when downstream channel conditions can accommodate them. The flood pool will be maintained in a dry condition when flooding is not occurring. The storage reservoir will have a total capacity of approximately 3,457 acre-feet (3.86 inches), of which 2,341 acre-feet (2.61 inches) will be gated providing detention times in excess of 30 days if needed. The total capacity of the storage reservoir is measured from the auxiliary spillway height (1019.5) down to the gated outlet invert (1003.0). The surface area of the pool will range from 0 acres (gated outlet invert) at elevation 1003.0 to approximately 599 acres (Auxiliary Spillway crest) at elevation 1019.5.

Details of the secondary benefits have not been specifically identified; however, these benefits will likely include a combination of wetland banking, upland prairie restorations, maintain the tax base, natural resource education, recreation areas, and wildlife habitat.

1.4 PROJECT DESCRIPTION

The Black River Impoundment Project will involve the construction of a flood control reservoir providing storage of floodwaters from the contributing drainage area, and ultimately augmenting floodwater flows in the Black River, improving conveyance abilities of the downstream channel.

The diking system will consist of the main flood pool dike around the north, south, and west sides of the site, tying into natural ground on the east end. The main dike will consist of approximately 3.0 miles of dike around the impoundment. The dike along the west side will be the highest approaching a maximum of 14 feet with an average of 8 to12 feet. The dikes along the north and south sides will be highest at the west end, about 10 to 12 feet. A typical section having a 12-foot top and 4:1 exterior side slope and 5:1 interior side slope will be used for the diking system.

To get runoff into the site, it is anticipated that 3 diversion ditches will be constructed. A 2.5-mile diversion ditch will be constructed in a north-south direction along CR 68. The proposed diversion ditch will begin at the half mile line in Section 24, T153N, R45W and flow in a southerly direction along the east side of CR 68 for approximately 1.5 miles, then crossing over to the west side of CR 68 in the northeast corner of Section 35, T153N, R45W until intersecting with CD 25 and flowing west 0.4 miles and crossing County Road 3 to the storage facility. The second 5.0 mile diversion ditch will be constructed starting

along the east side of CSAH 12 in the northeast corner of Section 18, T153N, R44W and flowing in a southerly direction along the east side of CSAH 12 for approximately 3.8 miles, then crossing over to the west side of CSAH 12 into Section 36 T153N, R45W, then proceeding south approximately 0.2 miles until intersecting with CD 25, then flowing west 1.0 miles along the north side of CSAH 3 in CD 25 to the location where the 2.5 mile diversion ditch along CR 68 enters into CD 25. The third 3.7-mile diversion ditch will begin 0.7 miles east of the southwest corner of Section 5, T152N, R44W, and flow in a westerly direction up to the Black River Church property in the southwest quarter of the southwest quarter, Section 2, T152N, R45W and flows north then west along the church property line before crossing CR 67 and entering the storage facility in Section 3, T152N, R45W.

The water from the diversion ditches will be diverted into the impoundment by constructing an inlet channel along the interior of the storage facility in Section 3 and 4, T152N, R45W to the outlet in the southwest corner of the storage facility.

The proposed outlet of the impoundment will be a gated culvert and riser and an auxiliary spillway for extreme flows. The low flow outlet is sized so that at least 85% of the gated volume will be released in 10 days or less. This is to minimize the opportunity for increased frequency of auxiliary spillway flow due to recurring storms. The auxiliary spillway (emergency spillway) is sized to protect the embankment from overtopping and is proposed to be cut through natural ground on the east end of the south embankment. The principal spillway will be near the southwest corner of the southeast quarter of the southeast quarter of Section 4, T152N, R45W, Polk Centre Township.

The proposed outlet channel will begin in the southwest corner of the southeast quarter of the southeast quarter of Section 4, T152N, R45W, Polk Centre Township, and flow in a westerly direction before outletting to the Black River. Figure 6 displays the associated project features mentioned here in the project description.

1.5 LAND OWNERSHIP AND LAND USE

The properties affected by the flood pool, diversion ditches, inlet and outlet channels are located in several sections of Polk Centre, Bray, Black River, and Sanders Townships in Pennington County. The flood pool will affect the lands located in Sections 3 and 4, T152N, R45W, Polk Centre Township. The 2.5 mile north-south diversion ditch will affect land located in Sections 24, 25, and 35, T153N, R45W, Bray Township. The 5.0 mile north-south diversion ditch will affect land located in Sections 18, 19, 30, 31 T153N, R44W, Sanders Township and Section 36, T153N, R45W, Bray Township. The 3.7 mile east-west diversion ditch will affect land located in Sections 1 and 2, T152N, R45W, Polk Centre Township and Sections 5 and 6, T152N, R44W, Black River Township. The outlet channel will affect land located in Section 4, T152N, R45W, Polk Centre Township. Preliminary design currently shows the auxiliary spillway using the same outlet channel to the Black River as the principle spillway outlet channel.

Landowners seem willing to work with the RLWD on pursuing this project. The RLWD has negotiated and executed with landowners on buying/obtaining flowage easements within the proposed impoundment site. The RLWD has also had several landowner meetings to discuss the preliminary diversion ditch designs and additional right-of-way needed.

Nearly all of the lands affected are currently used for agricultural purposes. These agricultural purposes consist generally of grain, soy bean, corn, sunflowers and pasture. There are no existing building sites

3

within the proposed pool area, however the diversion ditches are located directly adjacent to several sites. The lands affected are shown in <u>Figure 7</u>.

2 DATA SUMMARY

This report summarizes the proposed project and has been compiled and displayed for ease of reference in obtaining basic information for areas of specific interest. <u>Table 1</u> presents the storage capacity of the impoundment. <u>Table 2</u> presents estimated water surface elevations and discharge rates for applicable design events.

2.1 HYDROLOGY

Contributing Drainage Area	16.8 sq. mi.
Rainfall:	
2-year, 24-hour ¹ 5-year, 24-hour ¹	2.45 in. 3.11 in.
10-year, 24-hour ¹	3.71 in.
25-year, 24-hour ¹ 50-year, 24-hour ¹	4.62 in. 5.38 in.
100-year, 24hour ¹	6.20 in.
Auxiliary Spillway Hydrograph, 24-hour ² Freeboard Hydrograph, 24-hour ²	8.47 in. 14.33 in.
2-year, 10-day ¹	4.22 in.
5-year, 10-day ¹ 10-year, 10-day ¹	5.05 in. 5.80 in.
25-year, 10-day ¹ 50-year, 10-day ¹	6.91 in. 7.84 in.
100-year, 10-day ¹ Principal Spillway Hydrograph, 10-day ³	8.83 in. 7.77 in.
Snowmelt Runoff:	

10-year, 10-day43.63 in.(3,252 A-F)25-year, 10-day44.40 in.(3,942 A-F)50-year, 10-day44.95 in.(4,435 A-F)100-year, 10-day45.50 in.(4,928 A-F)

Notes:

- 1. Rainfall depths obtained from NOAA Atlas 14 Volume 8, Version 2
- 2. An areal reduction (TR-60 Figure 2-3) was applied to the Auxiliary Spillway and Freeboard Hydrographs for a drainage area of 16.8 square miles.
- 3. A principal spillway volume adjustment (TR-60 Table 2-3) was applied to the Principal Spillway Hydrograph
- 4. Minnesota Hydrology Guide (Using Figure 1-12^[2])

2.2 IMPOUNDMENT DESIGN

Embankment: Top of Dam Elevation Top Width	1022.5 12 ft.
Freeboard (Auxiliary Spillway Design Flood) Interior Side Slopes Exterior Side Slopes	2.05 ft. 5:1 4:1
Principal Spillway:	
Type: 60" RCP with Two-Way Reinforced Con	crete Riser
Flowline @ Inlet Riser Crest Elevation	1009.0 1017.5
Auxiliary Spillway:	
Type: 500-foot excavated earthen spillway Crest Elevation	1019.5
Storage:	
Gated, to Elev. 1017.5	2,341 A-F (2.61 inches)
Temporary, Elev. 1017.5 to Elev. 1022.5 (Top of Dam)	2,980 A-F (3.33 inches)
Principal Spillway (Riser Crest) Design Flood:	
Initial Water Surface Elevation	1017.50
Maximum Water Surface Elevation	1018.83
Auxiliary Spillway Design Flood:	
Initial Water Surface Elevation	1017.50
Maximum Water Surface Elevation	1020.45
Freeboard (Top of Dam) Design Flood:	
Initial Water Surface Elevation	1017.50
Maximum Water Surface Elevation	1020.69

Technical Release No. 60, "Earth Dams and Reservoirs" (TR-60)^[3] Note: All elevations in this report are given in North American Vertical Datum of 1988 (NAVD 88)

5

Elevation	Description	Surface Area (acres)	Storage Volume (acre- feet)	Runoff (inches)
1003	Pipe Invert	0	0	0.00
1004		1.0	0.4	0.00
1005		2.5	2.1	0.00
1006		4.5	5.6	0.01
1007		6.4	11	0.01
1008		8.6	19	0.02
1009		11	28	0.03
1010		17	42	0.05
1010.5		37	54	0.06
1011		88	84	0.09
1011.5		144	142	0.16
1012		196	228	0.25
1012.5		248	338	0.38
1013		299	476	0.53
1013.5		338	636	0.71
1014		365	812	0.91
1014.5		389	1,000	1.12
1015		409	1,200	1.34
1015.5		425	1,408	1.57
1016		444	1,626	1.81
1016.5		466	1,853	2.07
1017		487	2,091	2.33
1017.5	Riser Crest	510	2,341	2.61
1018		535	2,601	2.90
1018.5		561	2,875	3.21
1019		583	3,162	3.53
1019.5	Auxiliary Spillway	599	3,457	3.86
1020		607	3,759	4.20
1020.5		614	4,064	4.54
1021		622	4,373	4.88
1021.5		629	4,686	5.23
1022		635	5,002	5.58
1022.5	Top of Dam	639	5,321	5.94

Table 1: Impoundment Site Storage Capacity

Note: Storage Capacities were derived from LiDAR

- -

Table 2: Hydraulic Summary	ummary									
Storm Event	Rainfall (in.)	Inflow (cfs)	Reservoir Outflow (cfs)	Percent Reduction (%)	Max. Pool Elevation (ft)	Max. Storage Volume (ac-ft)	*Max. Pool Depth (ft)	Pool Surface Area (acre)	Starting Reserviour Storage	Gate Position
				24-hour Storm Simulations	n Simulations					
2YR-24hr	2.45	94	0	100%	1012.29	292	3.3	226	Empty	Closed
5YR-24hr	3.11	214	0	100%	1013.27	562	4.3	320	Empty	Closed
10YR-24hr	3.71	387	0	100%	1014.13	861	5.1	371	Empty	Closed
25YR-24hr	4.62	708	0	100%	1015.44	1383	6.4	423	Empty	Closed
50YR-24hr	5.38	696	0	100%	1016.53	1867	7.5	468	Empty	Closed
100YR-24hr	6.2	1211	5	100%	1017.63	2408	8.6	516	Empty	Closed
ASH-24hr	8.66	1464	967	34%	1020.45	4034	11.5	613	@Riser	Closed
FBH-24hr	14.33	1614	1393	14%	1020.69	4182	11.7	617	@Riser	Closed
				4-day Storm Simulations	Simulations			C		
2YR-4day	3.22	93	0	100%	1012.71	396	3.7	269	Empty	Closed
5YR-4day	4.02	220	0	100%	1013.77	731	4.8	353	Empty	Closed
10YR-4day	4.75	383	0	100%	1014.72	1088	5.7	397	Empty	Closed
25YR-4day	5.83	703	0	100%	1016.18	1707	7.2	452	Empty	Closed
50YR-4day	6.74	935	0	100%	1017.35	2266	8.4	503	Empty	Closed
100YR-4day	7.70	1225	54	%96	1018.09	2651	9.1	539	Empty	Closed
				10-day Storm Simulations	Simulations					
2YR-10day	4.22	72	0	100%	1012.54	349	3.5	252	Empty	Closed
5YR-10day	5.05	114	0	100%	1013.46	623	4.5	335	Empty	Closed
10YR-10day	5.8	205	0	100%	1014.30	925	5.3	379	Empty	Closed
25YR-10day	6.91	420	0	100%	1015.58	1443	6.6	428	Empty	Closed
50YR-10day	7.84	629	0	100%	1016.66	1929	7.7	473	Empty	Closed
100YR-10day	8.83	873	11	%66	1017.70	2445	8.7	520	Empty	Closed
PSH-50YR-10day	7.77	602	186	69%	1018.83	3064	9.8	575	@Riser	Closed

Note: *Max Pool Elevation Measured from Natural Ground within the Impoundment Site

3 EXISTING CONDITIONS

3.1 LAND USE

The Red Lake Watershed District is primarily composed of agricultural lands in the western side and forest, grasslands, and wetlands toward the east. According to data collected from the National Land Cover Database (NLCD) 2011^[6], the district land use is categorized as follows:

32.2 %	Agricultural – Cultivated Crops	
41.8 %	Water and Wetland	
12.7 %	Forest	
9.3 %	Prairie/Grassland	
3.4 %	Development - Urban/Rural	
0.6%	Barren/Shrub-Scrub Lands	

In comparison, the 16.8 square mile Project drainage area is predominately agricultural land and is better described as follows:

70.9 %	Agricultural – Cultivated Crops
12.7 %	Water and Wetland
10.4 %	Forest
0.4 %	Prairie/Grassland
5.3 %	Development - Urban/Rural
0.3%	Barren/Shrub-Scrub Lands

3.2 GEOLOGY AND SUBSURFACE SOILS

Per the United States Department of Agriculture Web Soil Survey^[7], the primary soil types within the impoundment include combinations of Borup, Glyndon, Roliss, and Vallers complexes. In addition, there are also scattered locations of other types of loams, mucks, and sands. Soil types for the proposed impoundment site are illustrated in <u>Figure 8</u>. Based on preliminary soil review, it is anticipated that soils within the impoundment site should be adequate for embankment construction pending the results of geotechnical investigation and design. Currently no soil borings have been taken at the project site, but they are being planned for the middle of October once all the crops are harvested.

3.3 FISH, WILDLIFE, AND ECOLOGICALLY SENSITIVE RESOURCES

A. Upland Habitat Resources

The existing land use within the proposed project area is comprised primarily of agricultural and riparian wetland areas. The agricultural lands consist generally of small grain, beans, or corn/sunflowers. Approximately 95% of the land within the proposed project storage site is currently tillable acres. The

remaining (non-tilled) areas are comprised of wetland and shrub-scrub lands. Currently, there are only minimal environmental impacts foreseen for this project.

Approximately 640 acres will exist within the proposed impoundment site. Approximately 516 acres will be inundated by the 100-year 24-hour flood pool. However, the remaining 124 acres will be outside the 100-year 24-hour pool and the RLWD is currently exploring avenues for possible wetland banking or project site-specific mitigation in these areas. If wetland banking or project site-specific mitigation is performed, a net change in land use will be a loss of tillable land and a gain of wetlands.

B. Existing Wetland Resources, Impacts, and Potential Mitigation

A wetland inventory was conducted within areas impacted by the proposed embankments, within the maximum flood pool elevation, and proposed ditches. Offsite wetland inventory work was conducted using U.S. Fish and Wildlife Service National Wetland Inventory (NWI 2011)^[8], county digital soil surveys (USDA-NRCS, 2011), as well as current and historical aerial photography. Two wetland inventory/delineations were conducted, a Field Wetland Inventory Report published in December of 2016 <u>Appendix D</u> and an Aquatic Resource Delineation Report for the diversion ditches was published in September 2017 <u>Appendix E</u>.

As a result of the Field Wetland Inventory Report, the extents of the wetland areas within the proposed impoundment site were identified using GPS and are shown in Figure 9. In general, very few wetlands exist within the impoundment site and it is anticipated that less than 0.1 acres will be impacted due to the construction foot print of the proposed dike and interior ditch. These wetland complexes primarily consist of both emergent and scrub-shrub species. These areas are small in size and are mainly located along the periphery of the main flood pool. The riparian areas where the project will likely empty to the Black River were also evaluated for the presence of wetlands. No riparian wetlands were identified. Upland vegetation was present to the top of the riverbanks.

As a result of the Aquatic Resource Delineation Report, existing wetland areas were identified within and adjacent to the existing ditch bottoms where the proposed diversion ditches are being proposed for deepening, 10-foot bottom width, and 4:1 sideslopes. These existing wetlands are being temporarily impacted by the construction of the improved diversion ditches, but will be reintroduced once construction of the proposed diversion ditches is completed.

Any wetland disturbance during construction will have to be mitigated and permitted. As part of final plans and prior to construction, wetland impacts will be delineated, permit applications will be submitted, and a mitigation plan will be developed. Figure 10 overlays the preliminary project layout over the project delineated wetlands to provide estimated wetland impacts for the project. See <u>Appendix D</u> and <u>Appendix E</u> for a more detailed review of the project delineated wetlands.

C. Biological Resources

1. Existing Inventories of Biological Resources

The available databases of Threatened and Endangered Species (T and E) were evaluated to determine if rare biological resources were present within the project area. No biological resources were identified within the project site by the available databases, however T and E (community) occurrences are present within a mile of the proposed diversion ditch in Section 5, T152N, R44W. T and E data is shown on the map in Figure 11.

2. Project Impacts to Biological Resources

The project is expected to produce a net gain in biological resources due to the addition of new permanent vegetative cover within the impoundment site that is currently agricultural lands. Buffer strips will be seeded along all constructed interior ditches and diversion ditches.

3.4 ENVIRONMENTAL REVIEW AND ASSESSMENTS

It was investigated whether an Environmental Assessment Worksheet (EAW) would be required for this project. The Minnesota Department of Natural Resources (MnDNR) performed an environmental review need determination on the proposed project. The project was identified to include elements that could trigger an EAW in five different categories listed in Minnesota Rules 4410.4300. They are Subpart 24.B, Subpart 24.C, Subpart 26, Subpart 27.A, and Subpart 36.A. DNR is the Responsible Government Unit (RGU) for Subparts 24.B and 24.C and made a determination that the project does not meet the thresholds requiring an EAW in these Subparts. The Red Lake Watershed is RGU for Subpart 26, 27.A, and 36.A. and made a determination that the project does not meet the thresholds requiring an EAW in these Subparts. See <u>Appendix C</u> for the Environmental Review Need Determination.

3.5 ARCHAEOLOGICAL RESOURCES

There has not been a reconnaissance survey of the project area. However, the project area has been disturbed by farming practices, and as a result it is considered unlikely that significant archaeological would be located in the project area.

3.6 WATER QUALITY

According to the Red Lake River Watershed Total Maximum Daily Load (TMDL) Report^[11], the Black River is impaired for dissolved oxygen, E. coli, Fish IBI, and M-IBI and the Red Lake River is impaired for turbidity/total suspended solids. Surface water flow is intermittent and comes from a heavily farmed watershed. Most of the water is conveyed via the existing legal ditch systems. It is anticipated that portions of the impoundment will be converted to permanent grass and buffers along channels. This should result in an overall improvement of the existing water quality leaving the site. In addition, the reduction in the flood peaks on the downstream channel should also reduce bank erosion during flood events and subsequent downstream turbidity.

4 PROPOSED PROJECT DESIGN

4.1 PRELIMINARY PROJECT DESIGN

The preliminary project design layout is shown in <u>Figure 6</u>. Final construction plans will be completed this winter to include plan and profiles, cross sections, details of the project design (i.e. structural design, erosion and sediment control plan, ...).

4.2 HYDROLOGY

A. Hydrology Model of the Basin

Inflow hydrology to the impoundment site was developed using the Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS) for developing rainfall to runoff relationships and hydrograph routing through the impoundment site.

Although flooding from spring snowmelt is oftentimes more severe than flooding caused by summer rainfalls, the spring floods do not typically affect agricultural production like a summer flood would when crops are vulnerable during the growing season. Therefore, the hydrology developed for this study focuses on summer rainfall events to evaluate the potential damages on maturing crops. Three rainfall durations were used to identify the critical storm producing the larges discharges in the sub-watershed. The modeled durations include 24-hour, 4-day, and 10-day storms and the associated average rainfall depths from NOAA Atlas 14 are presented in Table 3.

Return Period	24-Hour Rainfall (in.)	4-Day Rainfall (in.)	10-Day Rainfall (in.)
2 – year	2.45	3.22	4.22
5 – year	3.11	4.02	5.05
10 – year	3.71	4.75	5.80
25 – year	4.62	5.83	6.91
50 – year	5.38	6.74	7.84
100 – year	6.20	7.70	8.83

The synthetic rainfall events analyzed included the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals characterized using a SCS Type II rainfall distribution.

For predicting the rainfall to runoff relationship in the hydrology model, an NRCS (SCS) Runoff Curve Number (CN) was generated using National Land Cover Data (NLCD) and Hydrologic Soil Groups (HSG).

The NLCD, developed in 2011, was used to assess land use within the sub-watershed. This dataset was updated with the 2015 National Agricultural Statistics Service (NASS) to verify the land use classifications. The HSGs define the soil characteristics related to moisture retention and runoff potential. Much of the soils in the watershed exhibit dual classifications based on their ability to be drained and the resulting effect on the runoff. In these situations, it was assumed that the soil would not be drained which makes a soil with dual classification (ex. A/D soil) display runoff characteristics like a D soil.

Antecedent moisture describes the moisture condition of the soil prior to the major storm event which is to be studied. Three antecedent moisture conditions may be chosen to describe a dry, average, or wet soil. For the purposes of this analysis, an antecedent moisture condition II, or average condition, was selected for the analysis. Although not used in this study, an Antecedent Moisture Condition I, or dry condition, would produce runoff of lesser magnitude than the normal condition. An Antecedent Moisture Condition III, or wet condition, would produce a greater runoff than the normal condition.

B. Design Storms

Several different magnitudes and durations of precipitation events were analyzed for utilization as design storms and performance evaluation storms for the project.

The point rainfall values analyzed for the Design and Evaluation Storms originate from NOAA Atlas 14.

1. Principal Spillway Design Storm

Utilizing a conservative approach assuming the impoundment would be considered a Significant Hazard Dam, per TR-60 Table 2-2, the principal spillway was sized using a 50-year, 10-day rainfall. To accommodate the back to back storm criteria, the event was simulated allowing no outflow below the riser crest while starting with the flood pool full to the riser crest.

The 10-day 50-year rainfall event from NOAA Atlas 14 is 7.85". The principal spillway volume adjustments (TR-60 Table 2-3) suggests that for a watershed of 16.8 sq. mi. (Black River Impoundment Project Drainage Area) a ratio of 0.990 be used to adjust the rainfall amount in correlation to the watershed size. Therefore, the following computations were made to calculate the principal spillway design storm.

Principal Spillway Design Storm = 7.85" (NOAA Atlas 14) * 0.990 (TR-60 Table 2-3) = 7.77"

The principal spillway design storm produced a water surface elevation of 1018.83, which is lower than the design auxiliary spillway elevation of 1019.50.

The TR-60 design methods recommend follow-up storms for detention structures which do not empty 85 percent of their retarding volume after 10 days. The principal spillway design requires less than 10 days to drawdown the flood pool from the riser crest to the 85 percent level with the gate fully open. Therefore, the principal spillway meets the drawdown requirements.

2. Auxiliary Spillway Design Storm

The design storm for the auxiliary spillway was determined as recommended in TR-60:

$$P_{100} + 0.12(PMP - P_{100}) = 6.21" + 0.12*(28.0" - 6.21") = 8.82"$$

TR60 Figure 2-3 suggests that for a watershed of 16.8 sq. mi. (Black River Impoundment Project Drainage Area) an adjustment of 0.96 be made to the auxiliary spillway design storm. Therefore, the following computations were made to calculate the 24-hour auxiliary spillway design storm.

Auxiliary Spillway Design Storm = 8.82" * 0.96 = 8.47"

The auxiliary spillway storm event corresponds to an 8.47-inch rainfall with a duration of 24 hours. This storm was modeled assuming the pool was at the riser crest elevation of 1017.5 at the beginning of the storm with the gate closed.

3. Freeboard Design Storm

The free board design storm was determined as recommended in TR-60:

$$P_{100} + 0.40(PMP - P_{100}) = 6.21" + 0.40*(28.0" - 6.21") = 14.93"$$

TR-60 Figure 2-3 suggests that for a watershed of 16.8 sq. mi. (Black River Detention Project Drainage Area) an adjustment of 0.96 be made to the freeboard hydrograph. Therefore, the following computations were made to calculate the 24-hour freeboard hydrograph.

Freeboard Design Storm = 14.93" * 0.96 = 14.33"

The freeboard design storm event corresponds to a 14.33-inch rainfall with a duration of 24 hours. Routing this event through the structure serves to set a minimum top of dam elevation. The TR-60 recommends that the minimum vertical separation between the top of dam and auxiliary spillway crest elevations should be 3 feet. The effective top of dam is set at 1022.5 and the Auxiliary Spillway elevation is 1019.5. The storm was modeled assuming the pool was at the riser crest elevation of 1017.5 at the beginning of the storm with the gate closed.

4. Project Evaluation Storms

For flood management purposes, twenty-four (24) hour, four (4) day, ten (10) day storms and ten (10) day runoff events were analyzed to evaluate various structure design configurations.

4.3 HYDRAULIC DESIGN OF FLOOD CONTROL STRUCTURE

A. General Spillway Design

Spillways are provided for detention dams to release surplus or flood water that cannot be contained in the allotted storage space in a controlled manner. Ordinarily, the excess is drawn from the top of the pool created by the dam and conveyed through an artificial waterway back to the river or channel. The designs outlined in this report make use of a principal spillway system and an auxiliary spillway.

The basic data required for the spillway design includes flood pool surface area versus elevation and flood pool storage versus elevation, shown on <u>Figure 12</u> and <u>Figure 13</u>, respectively; and spillway discharge versus elevation curves, shown on <u>Figure 14</u>.

Also required are inflow hydrographs for the various storms and runoffs upon which the spillway design is based. The Principal Spillway Design inflow/outflow hydrographs are shown on <u>Figure 15</u> for the 50-year 10-day storm event. <u>Figure 16</u> shows the inflow/outflow hydrographs for the Auxiliary Spillway Event under different operation scenarios.

B. Principal Spillway Design

The required capacity of a principal spillway is dependent on the amount of storage provided, the type of auxiliary spillway, downstream channel capacity and stability, potential damage downstream from prolonged high outflow rates, possibility of substantial runoff from two or more storms in the time required to empty the reservoir, and flood flows during construction.

13

For this site, maximizing benefits for events of equal to or less than the 10-yr events was a priority. In addition, the ability to maintain longer detention time on the order of 30-days for spring flooding events and 14-days during summer flooding events to reduce downstream flooding was also a priority.

The principal spillway design proposed in this report has three main components: a 60-inch diameter lowstage gated inlet pipe, a 15-foot by 5-foot riser (inside dimensions) and a 60-inch diameter outlet pipe. The capacity of the impoundment is slightly less than the 100-year, 24-hour rainfall event. If the inlet gate is closed and the flood pool is empty at the beginning of the 100-year, 24 hour rainfall event, water is just beginning to flow over the riser by approximately 0.1 feet, releasing approximately 5 cubic-feet per second from the impoundment through the principle spillway.

Under the gate-closed condition, the principal spillway has the capacity to handle the principal spillway design storm (7.77 in.) starting with the flood pool full to the riser crest while preventing water from reaching the auxiliary spillway. The peak flood pool elevation was used as a basis for establishing the auxiliary spillway crest. In addition, if the flood pool is empty at the beginning of the storm event with the gate closed, the impoundment can contain a single 100-year, 10-day storm event without reaching the auxiliary spillway crest.

<u>Figure 17</u> and <u>Figure 18</u> show reservoir pool elevation versus time for the principal spillway hydrograph and the Auxiliary Spillway hydrograph, respectively. These graphs show how reservoir elevations versus time differ based on the flood pool elevation at the onset of the storm event. The lower curve shows elevations expected if the flood pool is empty at the onset of the storm, while the higher curve shows flood pool elevations expected if the flood pool is full to the riser crest at the beginning of the storm.

C. Auxiliary Spillway Design

Auxiliary spillways are provided to convey excess water through, over, or around a dam. The auxiliary spillway is provided to protect the dam even at the expense of possible flood damage below the structure, should a flood occur larger than that for which the dam was designed. The designed auxiliary spillway for the flood pool is a 500-foot excavated and vegetated open channel with crest elevation at 1019.50. The crest elevation is set such that no discharge will occur through the auxiliary spillway during a principal spillway design event starting with the flood pool full to the riser crest.

In addition, the auxiliary spillway is designed so it will pass the freeboard design storm (14.33 inches in 24-hours) at a safe velocity and without the water in the reservoir reaching the top of dam.

D. Top of Dam Elevation

The designed top of dam was set at 1022.50 which provides a minimum of 3-feet between the auxiliary spillway and design top of dam. This allows for 2.05 feet of freeboard over and above the pool elevation resultant of the Auxiliary Spillway storm and 1.81 feet of freeboard during the Freeboard Hydrograph event.

E. Detention Capacity

The storage capacity of the proposed structure below the auxiliary spillway crest elevation is approximately 3,457 acre-feet. This volume can detain approximately 3.86 inches of runoff from the contributing drainage area. Of this, approximately 2,341 acre-feet (2.61 inches) will be gated allowing for controlled detention until downstream flooding has receded. Therefore, the proposed flood control structure will provide significant runoff control from the contributing drainage area. Figures 19, 20, & 21 show the proposed project design inundation depths within the pool for the 10, 25, and 100-year – 24-hour rainfall events.

4.4 PROJECT PERFORMANCE/DOWNSTREAM BENEFITS

The proposed floodwater storage facility will serve to reduce flood peaks primarily by use of gated storage with additional temporary storage above the riser structure. When the dam is empty at the beginning of the storm, discharges are essentially eliminated on the 2, 5, 10, 25, 50, and 100-year 24-hr storm events, with 96% reduction in peak flow on larger events such as the 100-year 4-day storm event. As a result, the project essentially cuts off the 16.8 square mile drainage area from the downstream basin for the 24-hr, 4-day, and 10-day rainfall events less than the 100-year frequency.

In the immediate downstream area, the construction of the proposed site is expected to provide peak flow reductions on the 100-year – 24-hr, 4-day, and 10-day events of approximately 24%, 36%, and 24% respectively at the confluence of the proposed outlet and the Black River (57 sq. mi.), and 19%, 32%, 18% at the confluence with the Red Lake River and the Black River (145 sq. mi.). See Figure 22 for tabulated flow reductions at various locations downstream of the proposed project.

The 16.8 square mile drainage area of the proposed impoundment project makes up approximately 30% of the drainage area upstream of the proposed project outlet location and the Black River (57 sq. mi.), and 11.6% of the drainage area of the entire Black River sub-watershed (145 sq. mi.).

4.5 UPSTREAM IMPACTS

The off-channel impoundment site resulting from the proposed project will reduce peak water surface elevations upstream on the Black River from the proposed project outlet. The proposed project diversion ditches will capture runoff within the project drainage area that currently flows west through coulees and road ditches into the Black River upstream of the project site. The proposed site is an off-channel storage site of the Black River and negligible upstream negative impacts are foreseen from this project.

4.6 DAM DESIGN HAZARD CRITERIA AND CLASSIFICATION

It is generally accepted practice to classify dams according to their hazard potential downstream. Consideration is given to the damage that might occur to existing and future developments should the dam suddenly release large quantities of water downstream due to a breach, failure or landslide into the reservoir. The stability of the spillway materials, the physical characteristics of the site, downstream valley, and the relationship of the site to industrial and residential areas, including controls of future development, all have a bearing on the amount of potential damage in the event of a failure.

Minnesota Rules, parts 6115.0300 through 6115.0520 govern the state Dam Safety Program. The rules define which dams are subject to state jurisdiction, and establishes three dam hazard classes.

15

Proposed dams are generally classified by the DNR commissioner into the following three hazard classes as listed below:

- 1. Low Hazard, Class III: dams located in rural or agricultural areas where failure may damage farm buildings, agricultural land, or township and country roads.
- 2. Significant Hazard, Class II: dams located in predominantly rural or agricultural areas where failure may damage isolated homes, main highways or minor railroads, or cause interruption of use or service of relatively important public utilities.
- 3. High Hazard, Class I: dams located where failure may cause loss of life, serious damage to homes, industrial and commercial buildings, important public utilities, main highways, or railroads.

An early inspection of the downstream reaches from the proposed project indicated a rural or agricultural area where failure may damage agricultural cropland, township or county roads. In addition, there are farmsteads along the downstream projected watercourse. However, most of these farmsteads appear to be above any elevation that would subject them to endangerment from a potential dam breach. Future development downstream of the project is minimal to non-existent. A downstream breach analysis will be performed and the potential for serious damage will be evaluated. However, based on our preliminary analysis, it is our opinion the proposed structure would be determined a Low Hazard, Class III or Significant Hazard, Class II. For the preliminary design, we are using the Significant Hazard, Class II criteria for worst case scenario.

It is recommended that the RLWD coordinate with Pennington County Zoning Boards in establishing zoning requirements downstream from the project to limit the degree of development in the future. It is anticipated that this action would mainly involve the granting of building permits. The same type of controls should also be utilized upstream from the dam and adjacent to the maximum reservoir elevation.

4.7 RIGHT-OF-WAY

The RLWD has negotiated and executed with landowners on buying or obtaining land rights for flowage easements within the proposed impoundment site. The RLWD has also had several landowner meetings to discuss the preliminary diversion and outlet ditch designs and additional easements needed to construct those ditches. Negotiations with individual landowners along these proposed ditches will continue as design efforts proceed.

Approximately 250 acres within the impoundment site where land rights for flowage easements were executed will have the ability to be farmed by the current landowner. Farming will be permitted on these areas; however, the landowner will accept all risk associated with crop or other related damages. Land use options on the remaining 390 acres within the impoundment site that the RLWD purchased on fee title is still being explode.

The designed diversion ditches will be the source for water entering the impoundment site. The lands along these diversion ditches are currently used for agricultural production. Part of this project will install permanent grassed buffer strips along the field side of these ditches to aid in sediment control from adjacent fields.

16

4.8 PROJECT OPERATION

The primary operation of the proposed project will be for flood control. The intent of the operation will be to provide flow reductions downstream on the Black River, Red Lake River, and the Red River of the North. The operation plan will vary depending on the time of the year as outlined below. Note that this operation should be considered preliminary and is subject to change based on final project design and analysis.

A. Spring Operation – Typically April 1st – May 15th

The following procedure will be utilized in operating the gate/spillways for the project during spring runoff events:

- 1. Initiate gate closure on April 1st or upon the onset of significant spring snow melt and runoff.
- 2. The gate on this site will be fully closed allowing no outflow, except over the riser crest.
- 3. The gate will be open when all the following have occurred, or upon 30-days to allow evacuation of the reservoir:
 - a. Red Lake River at Crookston recedes below flood stage of 22 feet.
 - b. Red River of the North at Grand Forks recedes below flood stage 36 feet.
 - c. Red River of the North at Oslo flow has crested and is receding.

B. Summer/Fall Operation – Typically May 15th – November 15th

The following procedure will be utilized in operating the gate/spillways for the project during the remainder of the growing season, following spring runoff:

- 1. Initiate gate closure when either of the following occurs:
 - a. Significantly heavy rainfall is forecasted or has occurred within the sub-watershed.
 - b. Red Lake River at Crookston exceeds flood stage.
 - c. Red River of the North at Oslo exceeds flood stage.
- 2. Initiate gate opening when all the following have occurred to allow evacuation of the reservoir:
 - a. Red Lake River at Crookston recedes below flood stage of 22 feet.
 - b. Red River of the North at Grand Forks recedes below flood stage 36 feet.
 - c. Red River of the North at Oslo flow has crested and is receding.
- 3. During times when the gate is not being operated, the gate shall remain in a partially closed position to allow for automatic operation and reduction of flood peaks.

4.9 REQUIRED PERMITS

Table 4 lists known permits that may be required for the project.

Table 4 - Permits								
Unit of Government	Type of Application	Status						
FEDERAL: USACE	Section 404	Application to be developed (minimal environmental impact)						
STATE: MnDNR	Dam Safety Protected Waters	Application to be developed. Application to be developed (minimal impact)						
MN Historical Society	Approval	Request to be developed						
MPCA	Storm Water Permit for Construction	Application to be developed						
	WCA Permit (for wetland impacts)	Application to be developed						
LOCAL: County/Township	Highway Construction (Culvert Upgrades)	Application to be developed						
	County Shoreland Zoning	Application to be developed						

5 COMPATIBILITY WITH EXISTING PLANS

5.1 RLWD WATERSHED MANAGEMENT PLAN

The project is in conformance with the Red Lake Watershed District 10-Year Comprehensive Plan^[9]. The 10-Year Comprehensive Plan was published in May 2006, specifically lists the Lower Red Lake River sub-watershed as an FDR strategy to be pursued.

The Black River sub-watershed was also identified for retention locations recognized in RLWD's Expanded Distributed Detention Strategy Study published in November 2013. The retention within Black River sub-watershed would work towards the Red River 20% peak flow reduction goals.

5.2 RED RIVER WATERSHED MANAGEMENT BOARD

The mission statement of the Red River Watershed Management Board is *"to institute, coordinate, and finance projects and programs to alleviate flooding and assure the beneficial use of water in the watershed of the Red River of the North and its tributaries."*

The Black River Impoundment Project is in conformance with the Board's mission statement, as well as the goals and objectives as listed in Chapter 1 of the Red River Watershed Management Board Governing Documents. According to these documents, the principal objective of the Red River Watershed

Management Board is to "assist member Watershed Districts with the implementation of water related projects and programs. The purpose of these projects and programs is the reduction of local and main stem flood damages, and also to enhance environmental and water resource management. Projects and programs must be of benefit to the Red River Basin and its member watershed districts in order to qualify for RRWMB funding". This project will provide flood damage reduction and other benefits to the Red River Basin, Lower Red Lake River Basin, and Black River sub-watershed.

The details of the secondary purposes of the proposed project have not been identified explicitly, however could include a combination of the following; wetland banking, land set-aside, prairie restorations, maintain a tax base, research area for wetlands impacted by fluctuating water levels, education and recreation area, and others. The Black River Impoundment Project may also function to address the following supporting objectives of the Red River Watershed Management Board.

- Coordination
- Financial Support
- Basin Planning
- Water Quantity
- Water Quality
- Erosion and Sedimentation
- Education
- Research

The STar Value computation is intended to provide a quick and easy method for the Red River Watershed Management Board to estimate the value of a project in achieving the goal of reducing peak mainstem flows. It is based on parameters that can be determined during early stages of project development and which can be kept up-to-date as the project moves through various funding steps. The method strongly favors projects which are designed and operated to achieve long detention times. The STar value equation, as presently stands is:

S = adjusted storage volume in acre-feet

T = relative value of the retention time in days

In the process of developing this method, the RRWMB has established the following average lag times between the routed tributary peak and the Red River Main Stem peaks based on historic flooding analysis. As shown in <u>Table 5</u>, the gage at Crookston on the Red Lake River generally has a peak that coincides within 1 day of the peaks on the Red River of the North Main Stem and the gage at Red Lake Falls on the Clearwater has a peak that coincides approximately 2 days of the peak on the Red River of the North Main Stem. The HEC-HMS model created for the Red Lake Watershed District's Expanded Distributed Detention Strategy^[5] was used to correlate the peak discharge times for various locations along the Black River with the two known gage locations mentioned above. Modeling results showed that the Black River Impoundment Site Project has a peak that coincides approximately 1 day after the peak on the Red River of the North Main Stem.

Table 5- Average Time Interval Between the Tributary Peak and the Red River Main Stem Peak

	Days before (-)			
	Days after (+) the			
Gage Location	Peak			
Bois de Sioux nr White Rock	15			
South Branch Buffalo River @ Sabin	-3			
Buffalo River nr Hawley	-3			
Buffalo River nr Dilworth	-3			
Wild Rice @ Twin Valley	0			
Wild Rice River @ Hendrum	0			
Marsh River nr Shelly	-1			
Sandhill River @ Climax	0			
Red Lake River @ Highlanding	5			
Thief River @ TRF	5			
Clearwater @ Plummer	6			
Lost River @ Oklee	3			
Clear Water @ Red Lake Falls	2			
Red Lake River @ Crookston	0			
Middle River @ Argyle	-6			
Two River @ Lake Bronson	-6			

The STar Value of the Black River Impoundment Project is estimated to be 68,446. Assuming a total project cost of \$6.9 million, the Red River Watershed Board cost per STar Value will be approximately \$33.60. This corresponds to approximately \$24.11/STar Value in year 2000 dollars.

5.3 RED RIVER BASIN FLOOD DAMAGE REDUCTION WORK GROUP AGREEMENT AND RED LAKE WATERSHED DISTRICT PROJECT TEAM

The project supports the Group's goals for flood damage reduction and natural resources. The project will reduce the risk of flood damage within the project area to farmland and public infrastructure. The project will also aid in improving water quality, reduce erosion damage to the Black River caused by flooding, and overall reduce social and economic damages to the project area.

5.4 PENNINGTON COUNTY COMPREHENSIVE LOCAL WATER PLANS

The project is in conformance with the Pennington County Comprehensive Local Water Plans. The RLWD has similar goals and objective in water resources as other local government agencies within the county such as the Pennington County Soil and Water Conservation District (SWCD) and Pennington County Highway Department. They all have similar goals and objectives of water quality, flood damage reduction, water erosion. In recent years these agencies have collaborated in two applications for performing a One Watershed One Plan on two different river systems within the county. The goal of the One Watershed One Plan effort is to have a collaborating water plan for all entities to follow.

6 ALTERNATIVES CONSIDERED

The RLWD is continuously looking for methods to reduce flood damages and improve natural resources within the district. The Red Lake Watershed District's Expanded Distributed Detention Strategy^[6] identified the Black River sub-watershed as a location to implement flood damage reduction strategies. To begin the development of a flood control impoundment project, the RLWD investigated conceptual alternatives for the Black River sub-watershed. Four conceptual impoundment site alternatives were reviewed, and are shown as alternatives A through D in Figures 2 through 5. Conceptual design was performed on these alternatives to determine storage capabilities, drainage areas, length of diversion ditches, and levee elevations. After reviewing the conceptual alternatives for their flood damage reduction capabilities and cooperation from local landowners, privately owned agricultural lands were made available by either fee title or permanent flowage easements for the Alternative A impoundment site and was selected for further engineering investigation. This impoundment site also provided adequate storage capacity, drainage area, minimal foreseen environmental impacts, and willing landowners for an impoundment site location on existing agricultural land.

7 FINANCING AND RECOMMENDATIONS

7.1 OPINION OF PROBABLE COST

An opinion of probable cost has been determined to be approximately \$6.9 million. An itemization of the opinion of probable cost is shown in Figure 23.

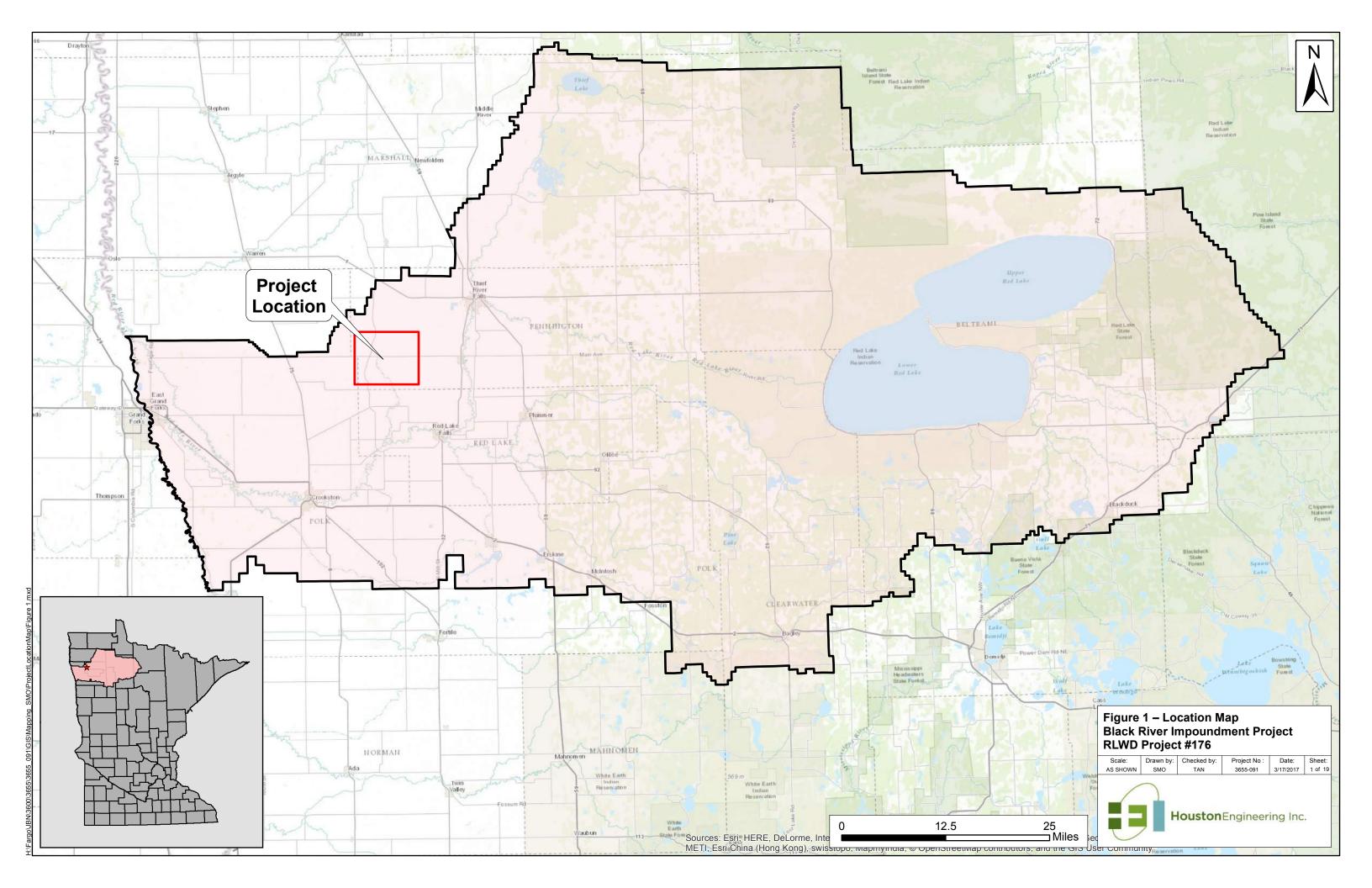
7.2 PROJECT FUNDING/FINANCING

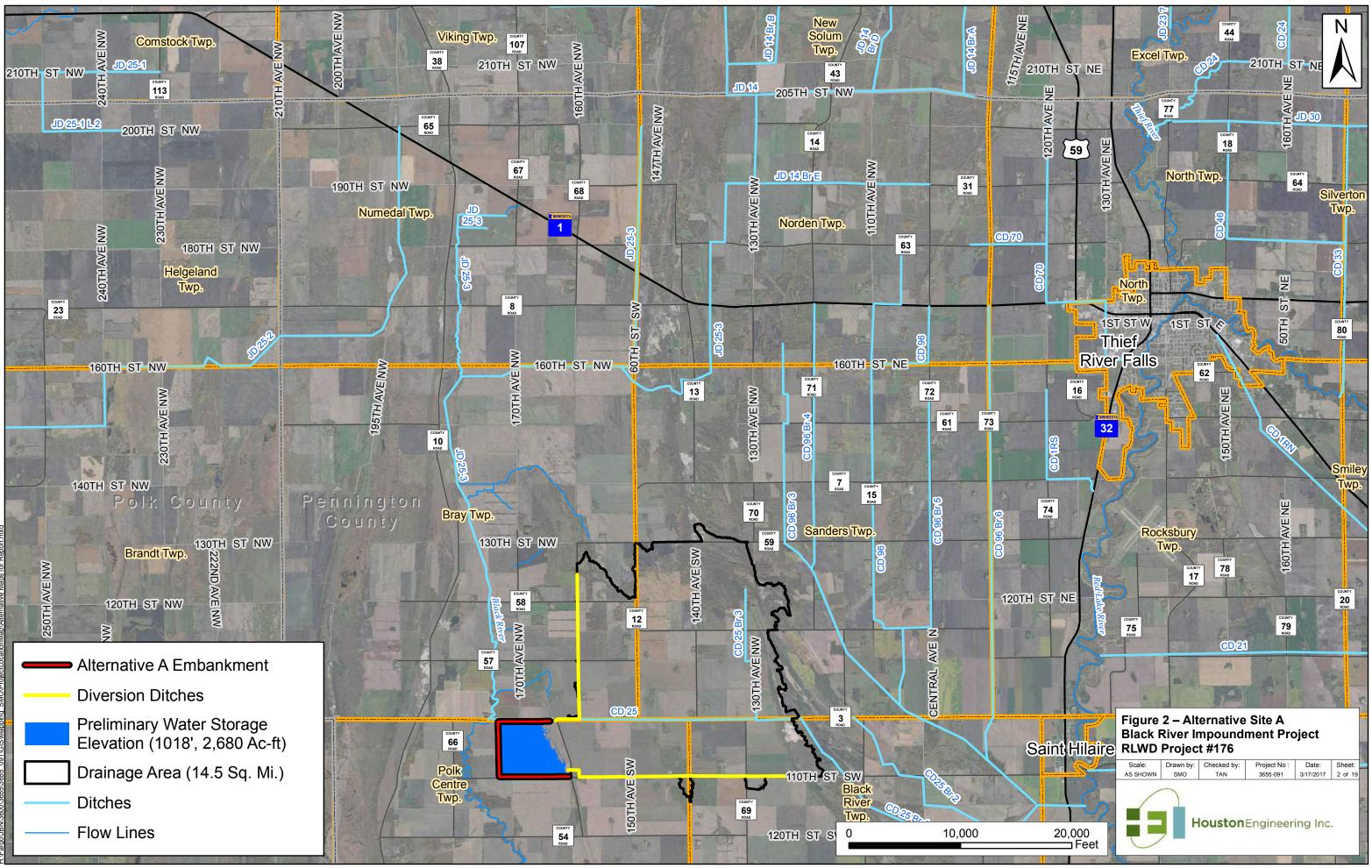
Funding has not been secured from any source at this time. The RLWD applied for state funding for the fiscal year 2018, but didn't' qualify due to other projects within the state being earmarked for funding and city protection for flood damage reduction taking a higher priority. The RLWD is planning to apply for state funding again for the fiscal year 2019. In evaluating the project's feasibility, based on typical funding patterns for similar projects in the past, we have assumed the following:

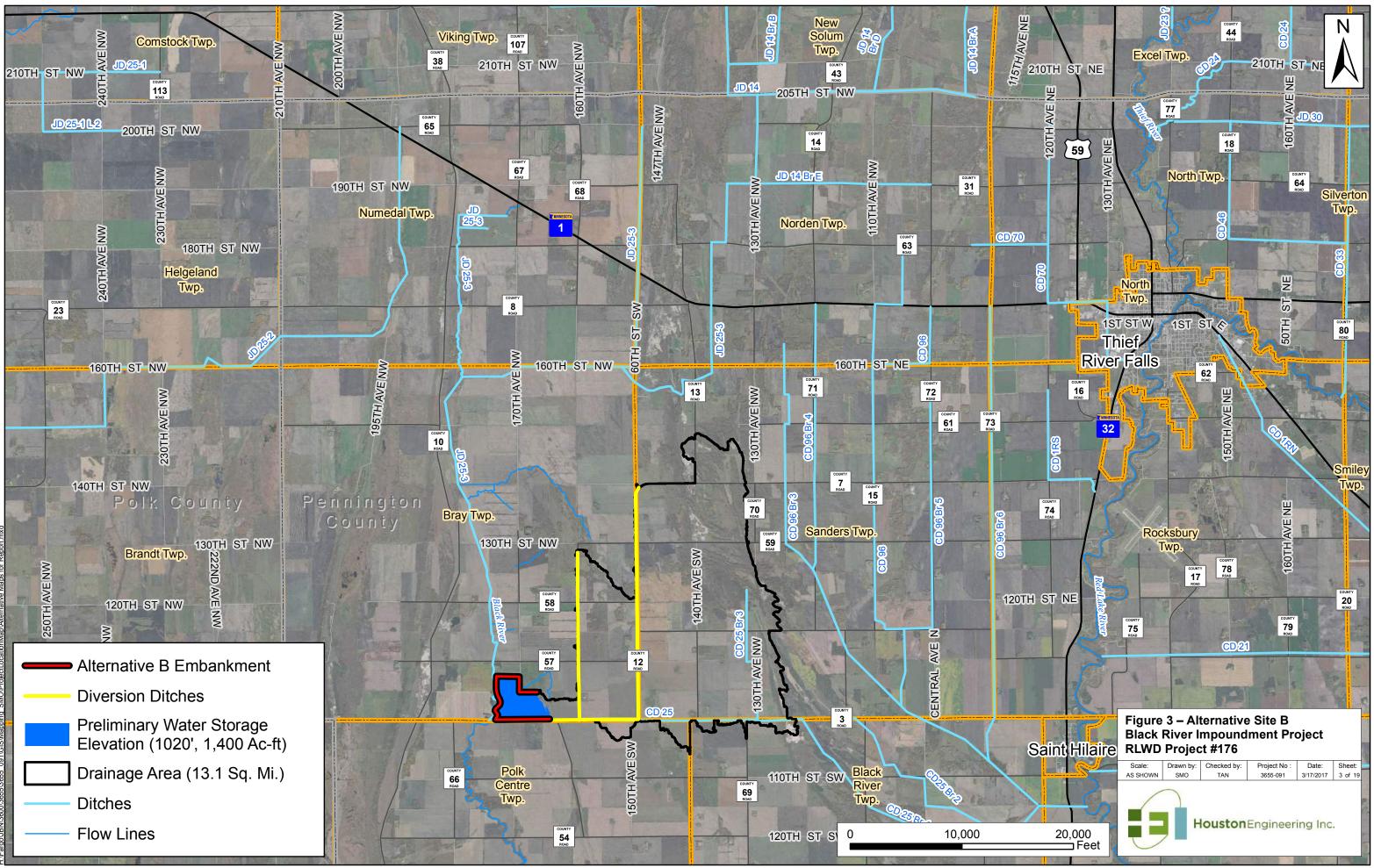
- \$3,450,000 State of Minnesota Flood Damage Reduction Program (50%)
- \$2,300,000 Red River Watershed Management Board (33.33%)
- \$1,150,000 Red Lake Watershed District and Other Sources (16.67%)

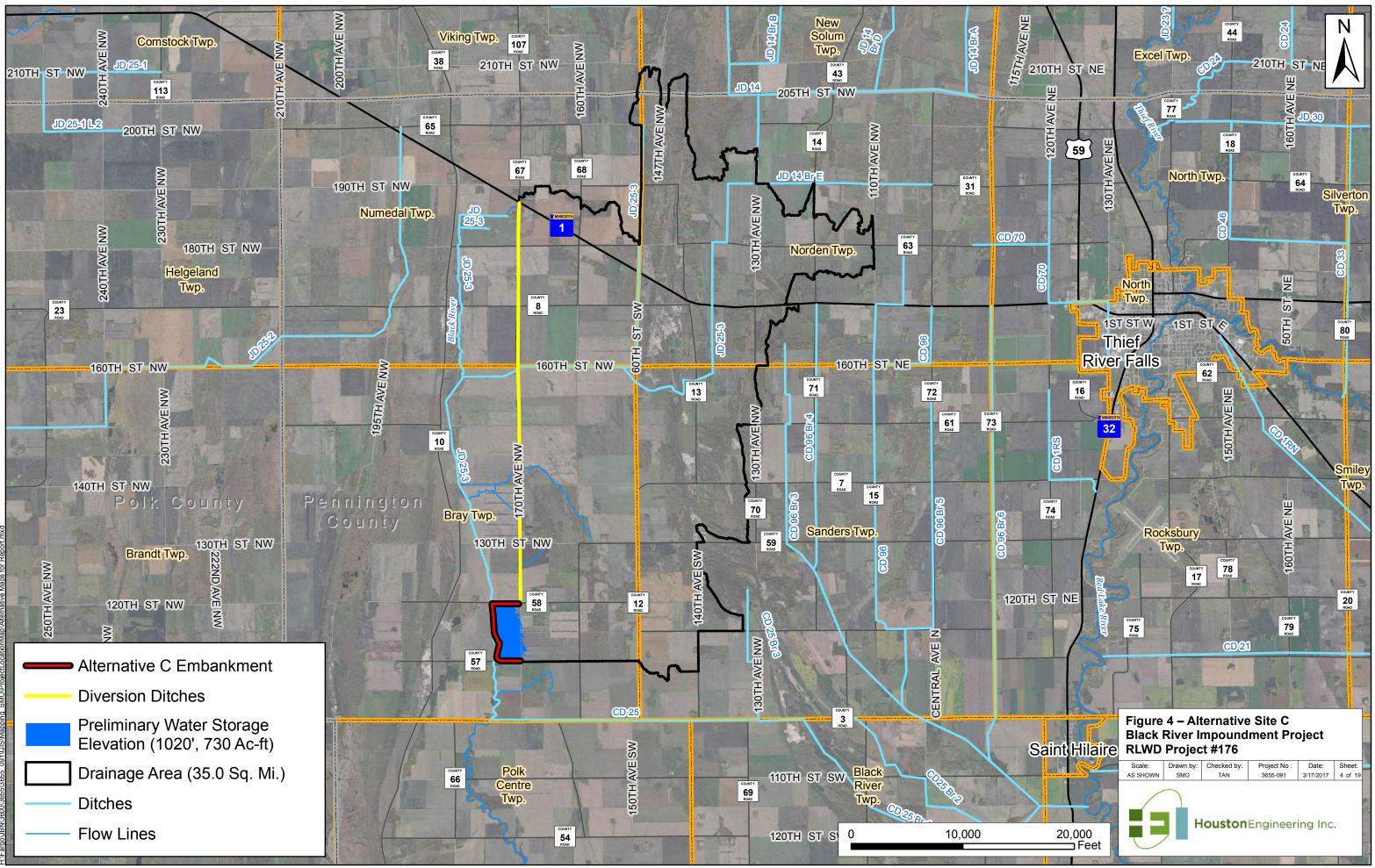
The funding identified as from the Red Lake Watershed District and Other Sources may come from RLWD assessments, water management district fees, natural resource agencies or other organizations.

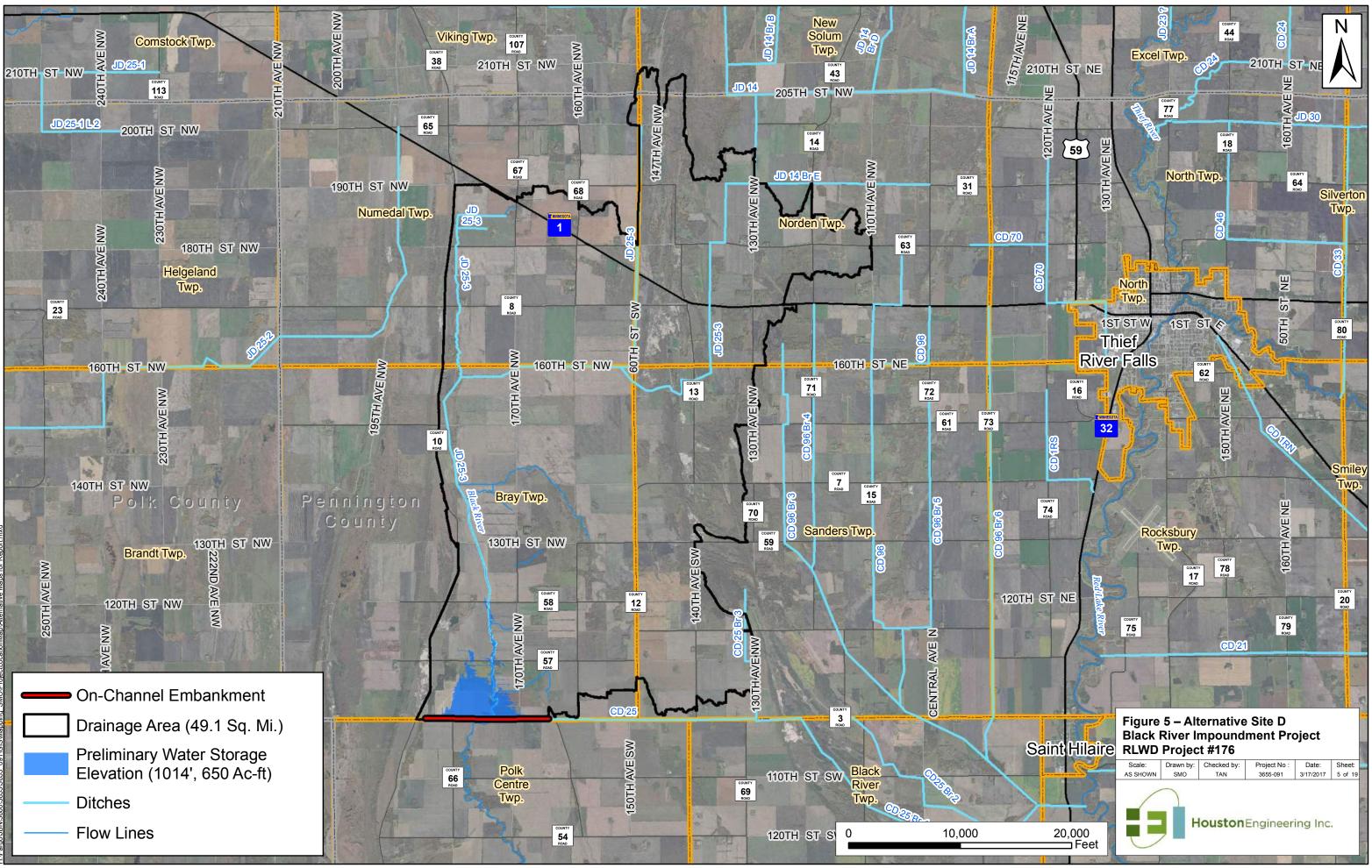
7.3 RECOMMENDATION

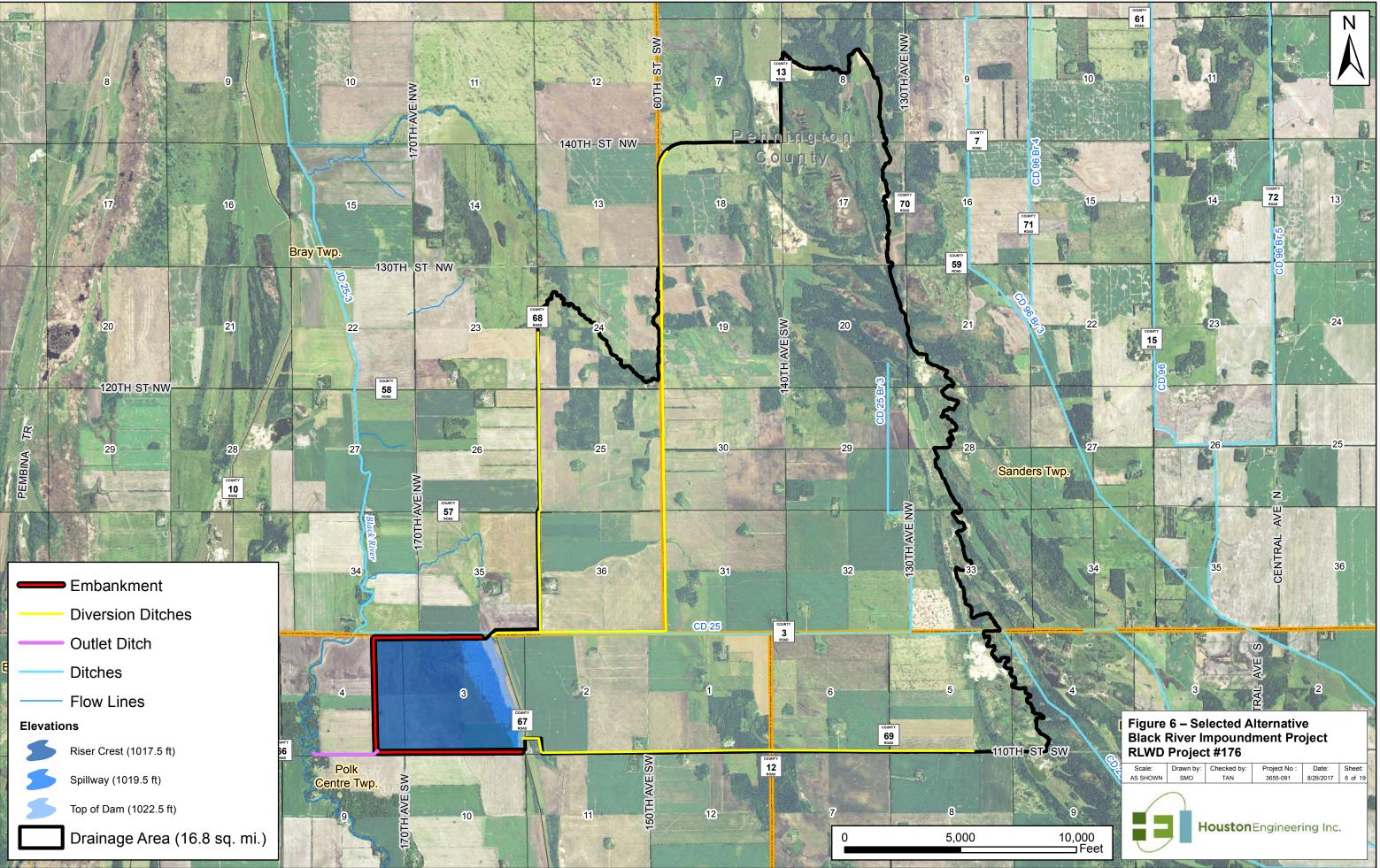

The establishment of the Black River Impoundment Project will provide flood damage reduction and natural resources benefits. The preliminary design and information available finds that the project is feasible and recommends the RLWD to take the necessary steps to continue the development of the project.

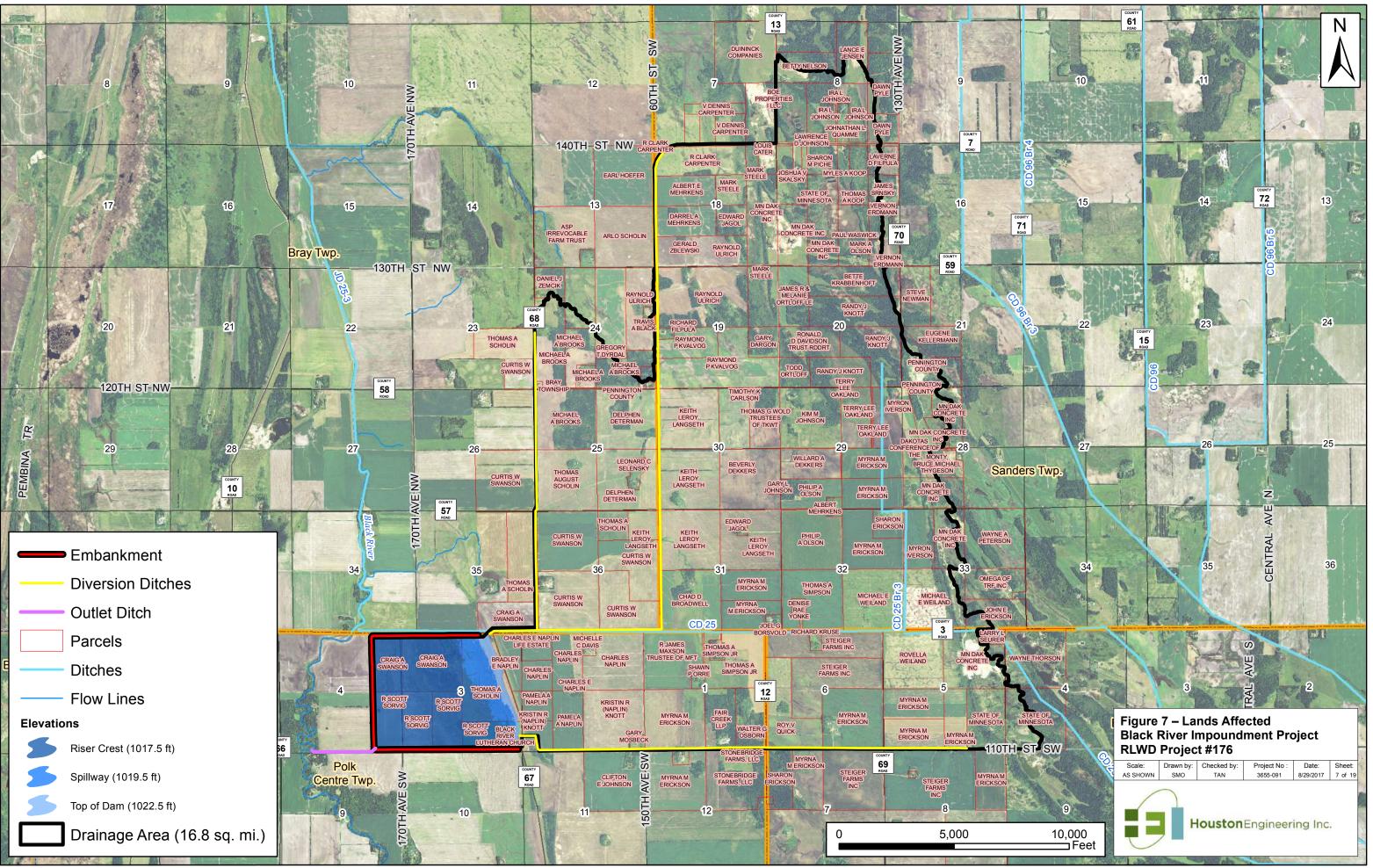

8 **REFERENCES**

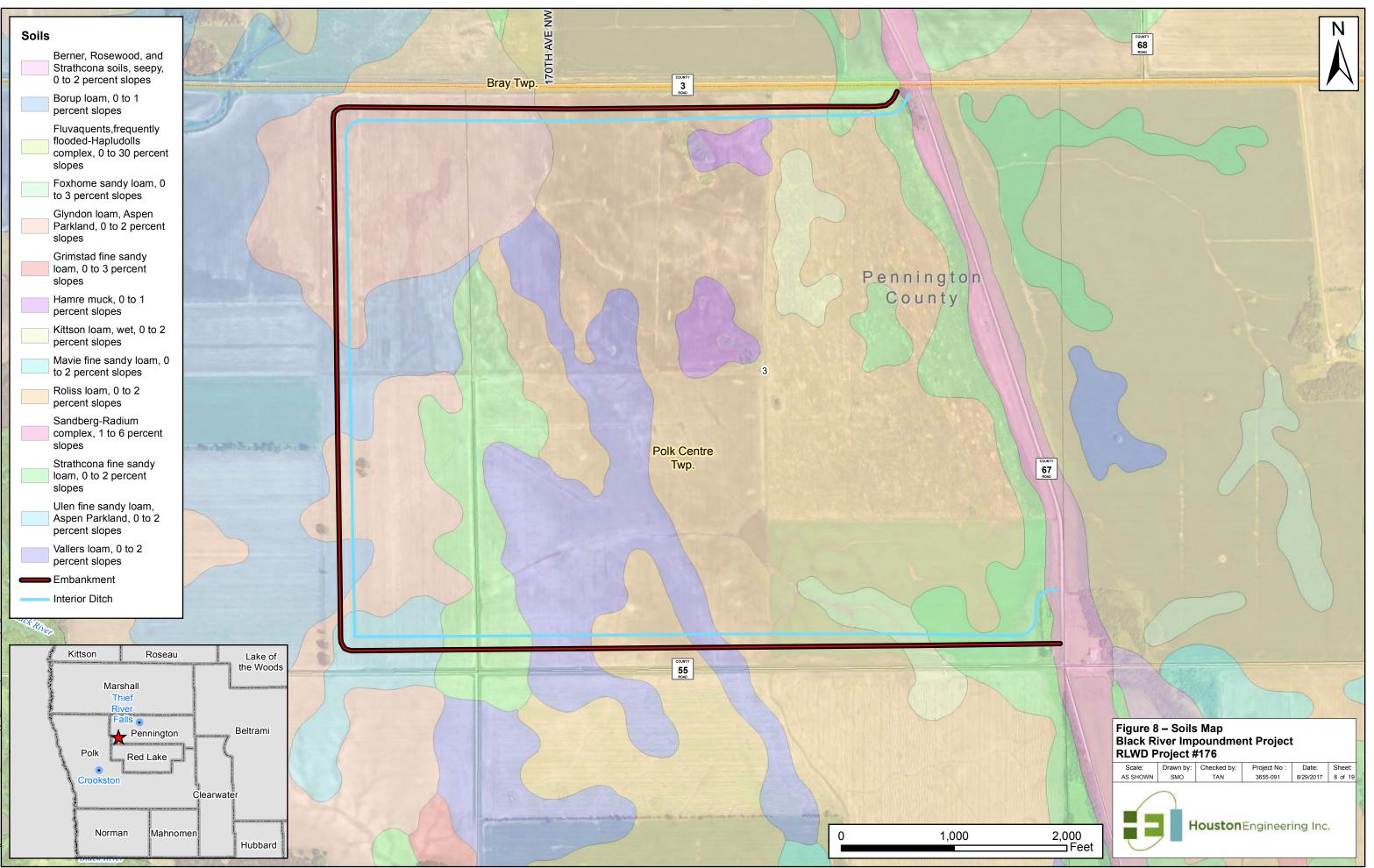

- ^[1] National Oceanic and Atmospheric Administration. (2013). NOAA Atlas 14 Volume 8 Version 2: Precipitation-Frequency Atlas of the United States. Silver Spring, MD: NOAA, National Weather Service.
- ^[2] U.S Department of Agriculture Soil Conservation Service, Getting the most out of your raindrop: Hydrology Guide for Minnesota, St. Paul, Minnesota, 1970.
- ^[3] USDA-NRCS, Technical Release No. 60, "Earth Dams and Reservoirs" (TR-60), (Issued July 2005).
- ^[4] Red River Basin Commission, Long Term Flood Solutions for the Red River Basin, September 2011.
- ^[5] HDR Engineering, Inc. (2013) Red Lake Watershed Expanded Distributed Detention Strategy, Thief River Falls, MN, Red Lake Watershed District.
- ^[6] Homer, C.G., Dewitz, J.A., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, N.D., Wickham, J.D., and Megown, K., 2015, *Completion of the 2011 National Land Cover Database for the conterminous United States-Representing a decade of land cover change information.* Photogrammetric Engineering and Remote Sensing, v. 81, no. 5, p. 345-354
- ^[7] USDA-NRCS. 2011, Soil Survey of Minnesota by County (Pennington County). <u>http://websoilsurvey.nrcs.usda.gov/app/</u> (Accessed March 2017)
- ^[8] U. S. Fish and Wildlife Service. National Wetlands Inventory website. U.S. Department of the Interior, Fish and Wildlife Service, Washington, D.C. <u>http://www.fws.gov/wetlands</u>
- ^[9] HDR Engineering, Inc. (2006) Red Lake Watershed District 10-Year Comprehensive Plan, Thief River Falls, MN, Red Lake Watershed District.
- ^[10] MPCA-RLWD, (2017), Red Lake River Watershed Restoration and Protection Strategy Report.
- ^[11] MPCA-RLWD, (Draft 2017), Red Lake River Watershed Total Maximum Daily Load Report.

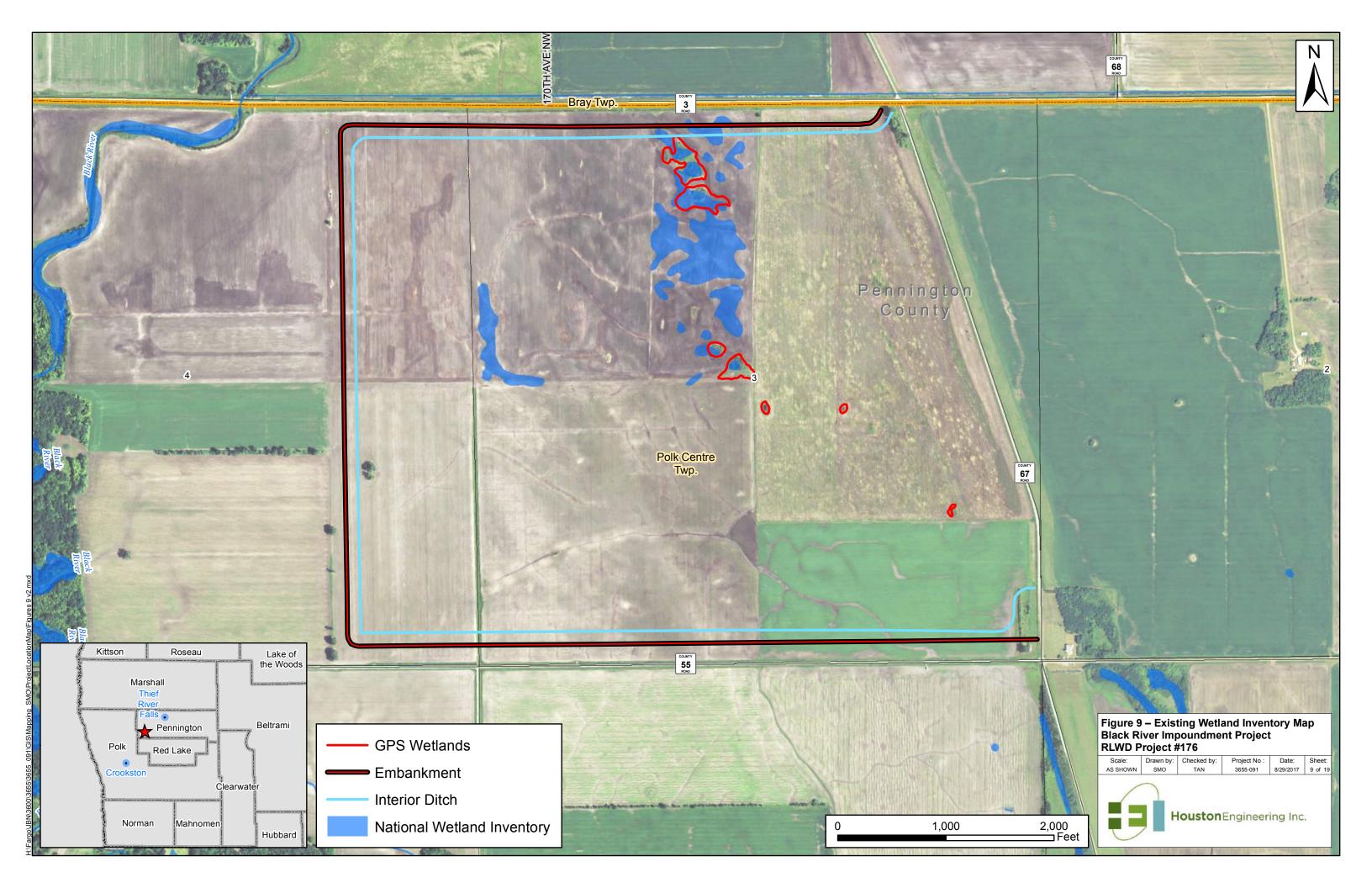


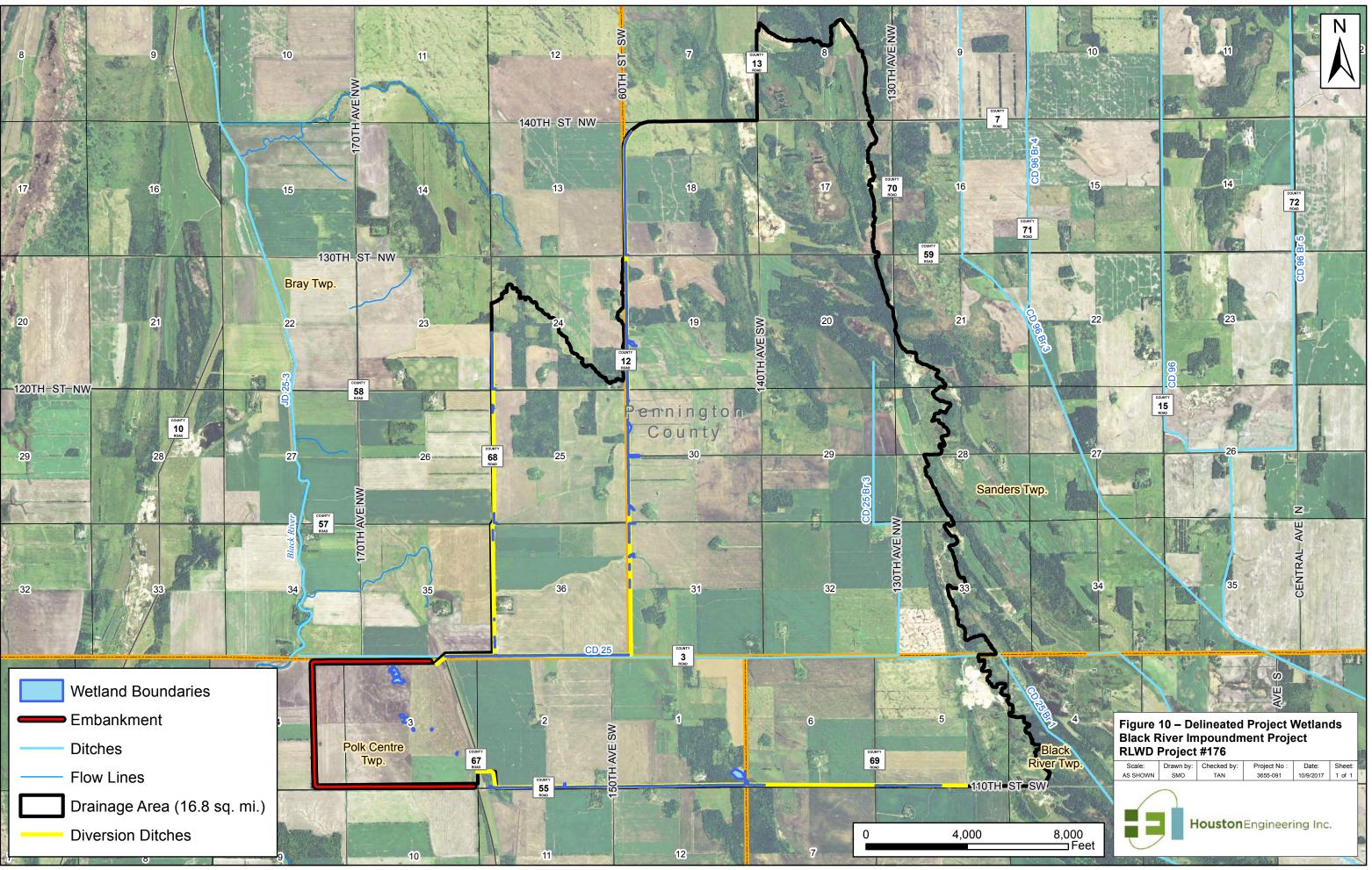


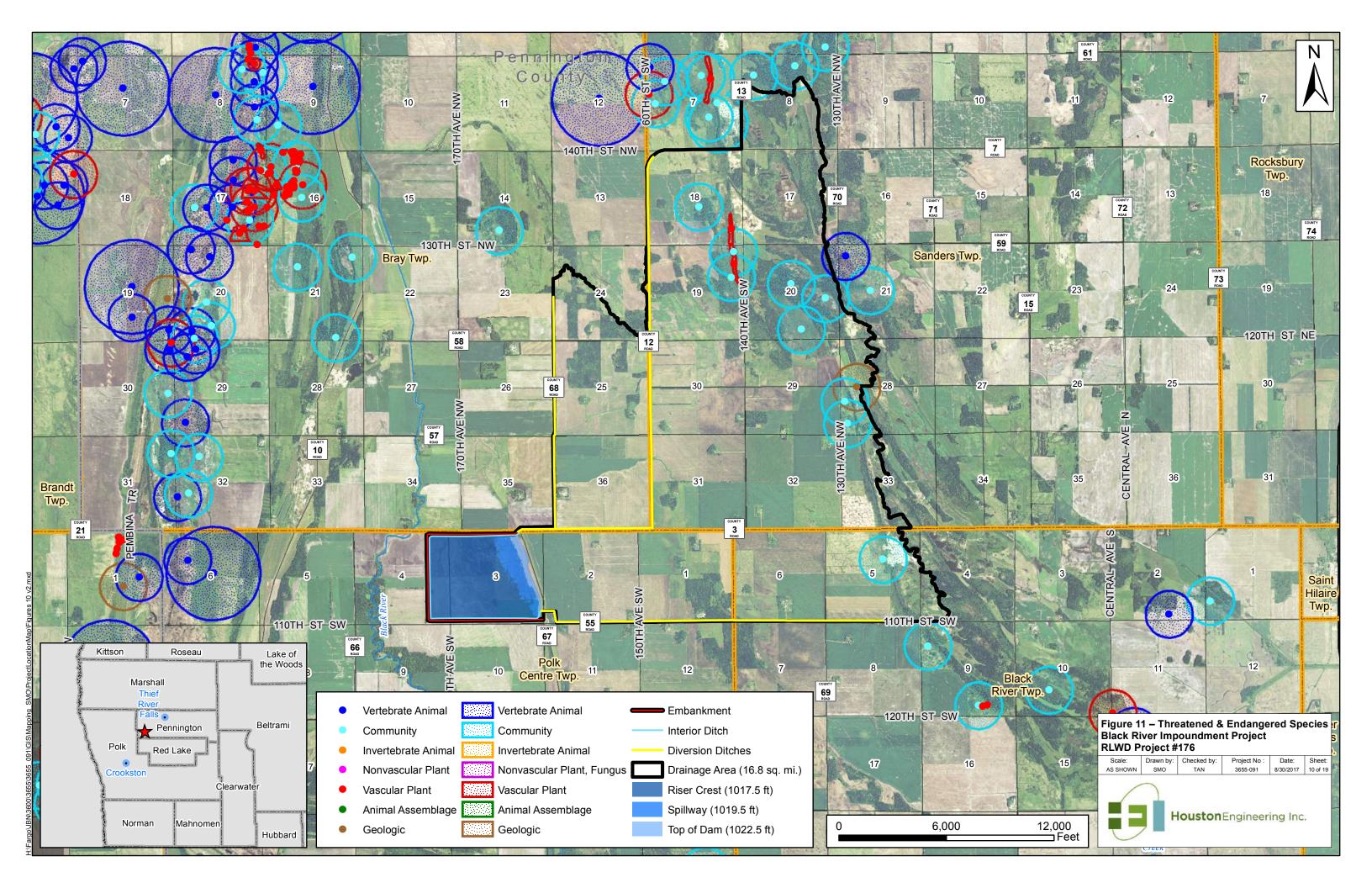


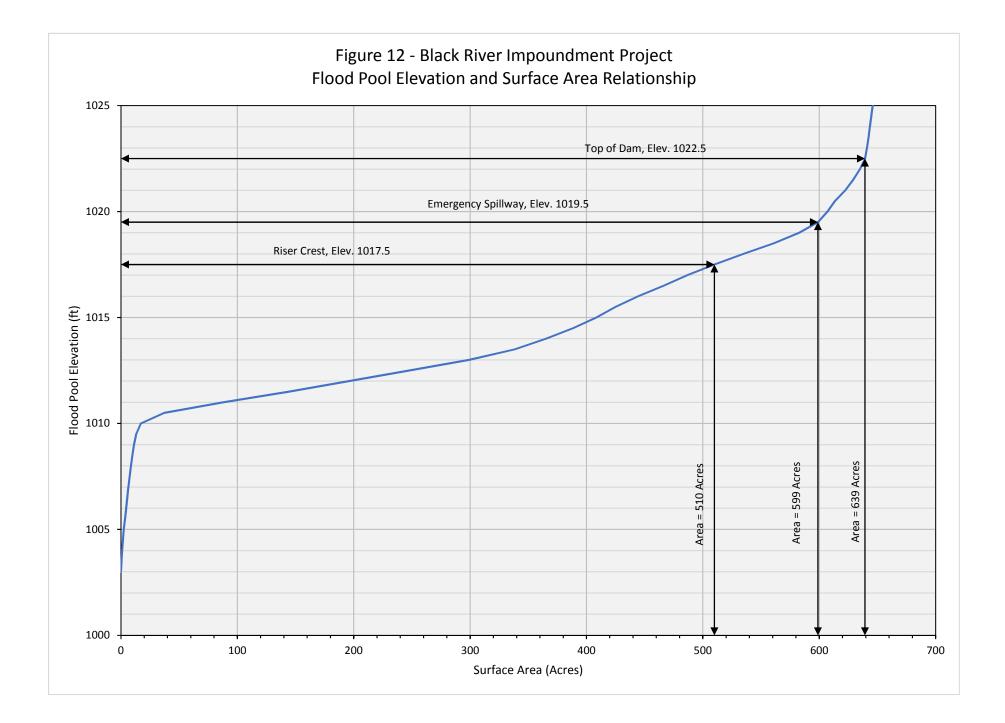


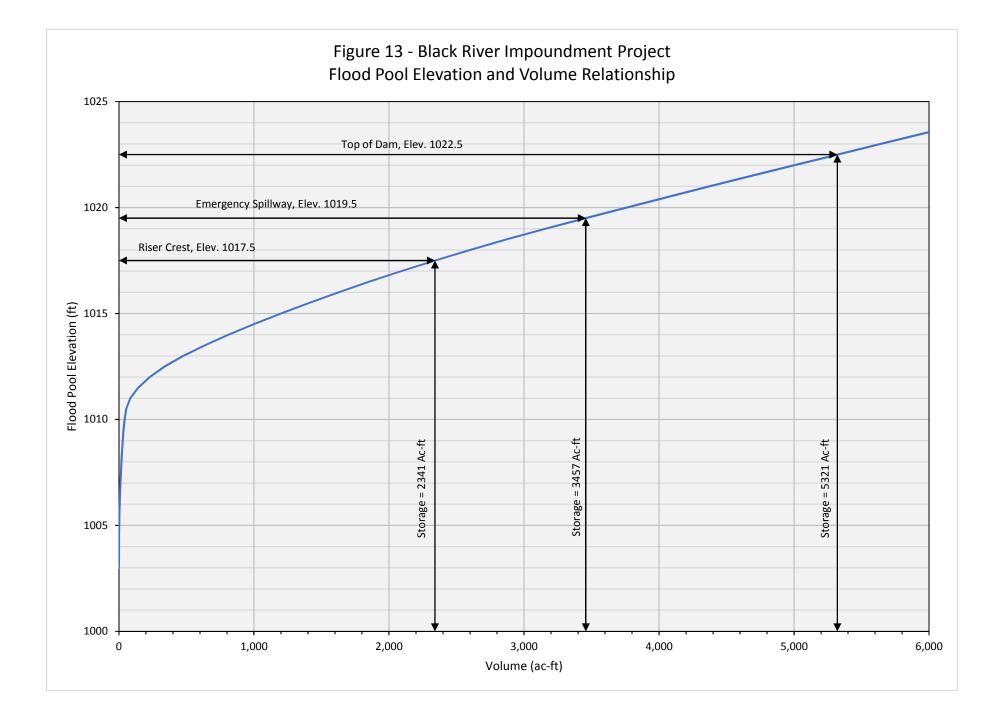


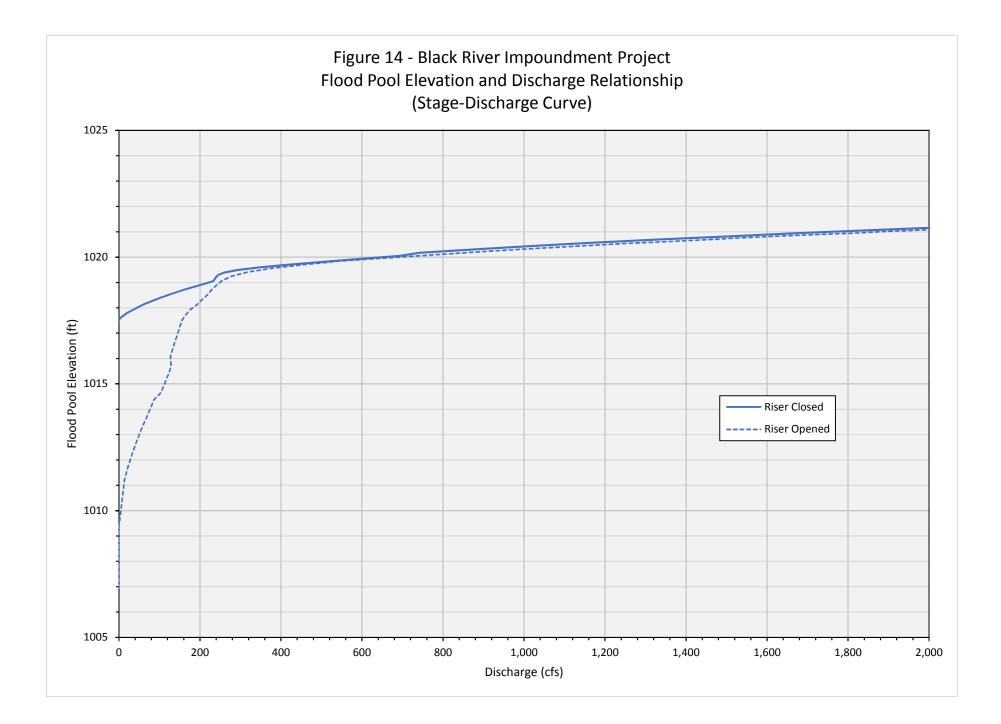

H:/Fargo\JBN\3600\3655\3655_091\GIS\Mapping_SMO\ProjectLocationMap\Alternative Maps for

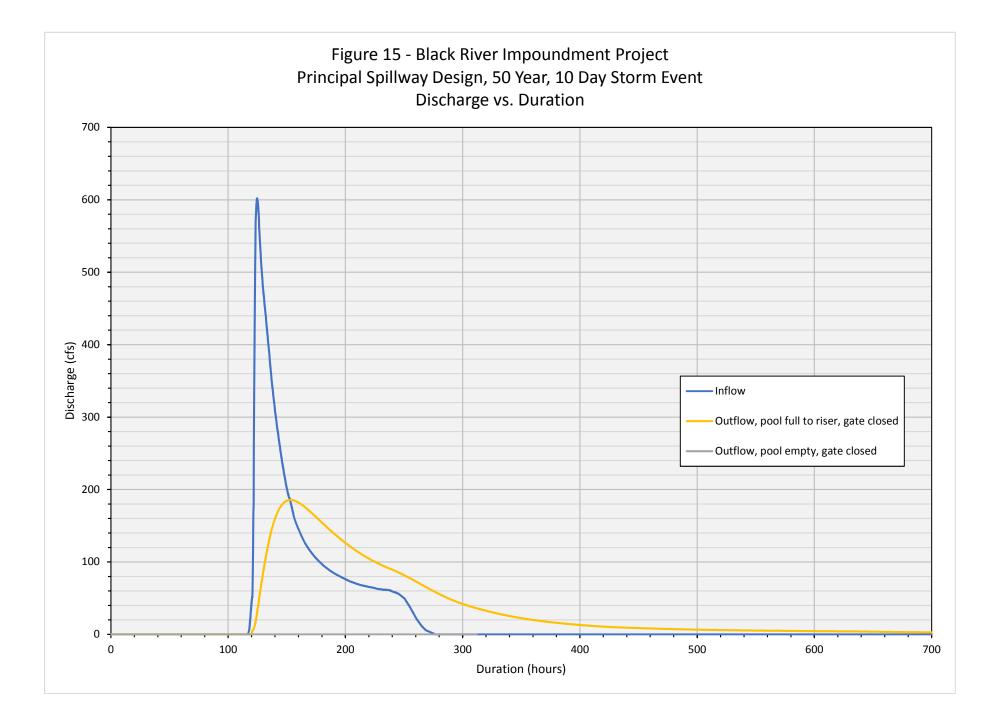


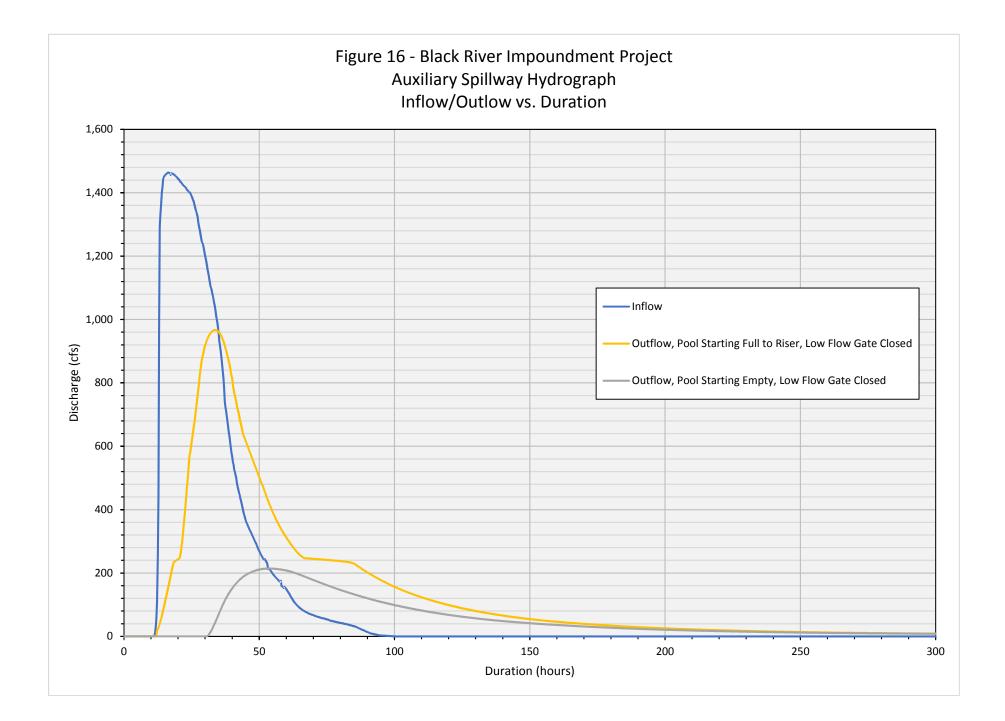


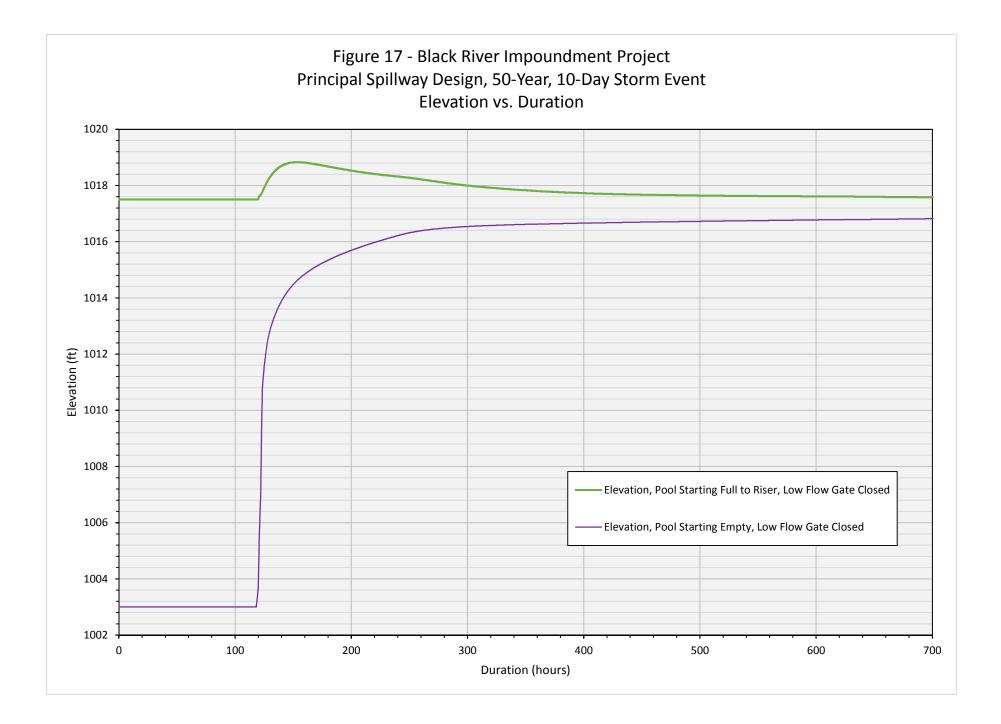


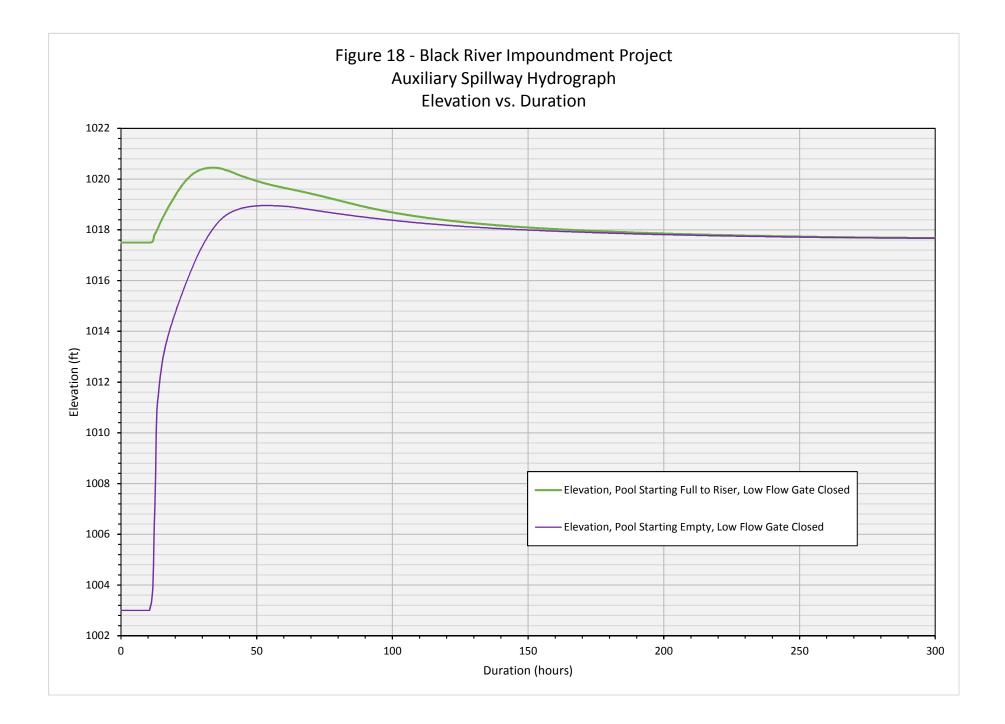

o\JBN\3600\3655\3655_091\GIS\Mapping_SMO\ProjectLocationMap\Figu

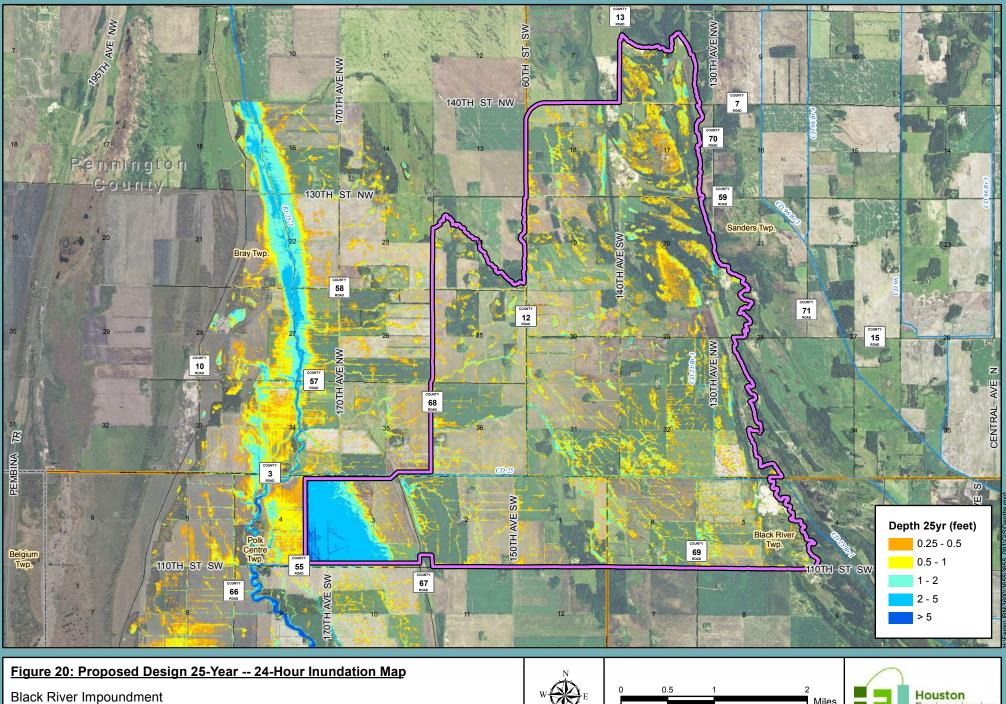


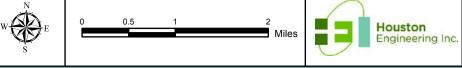


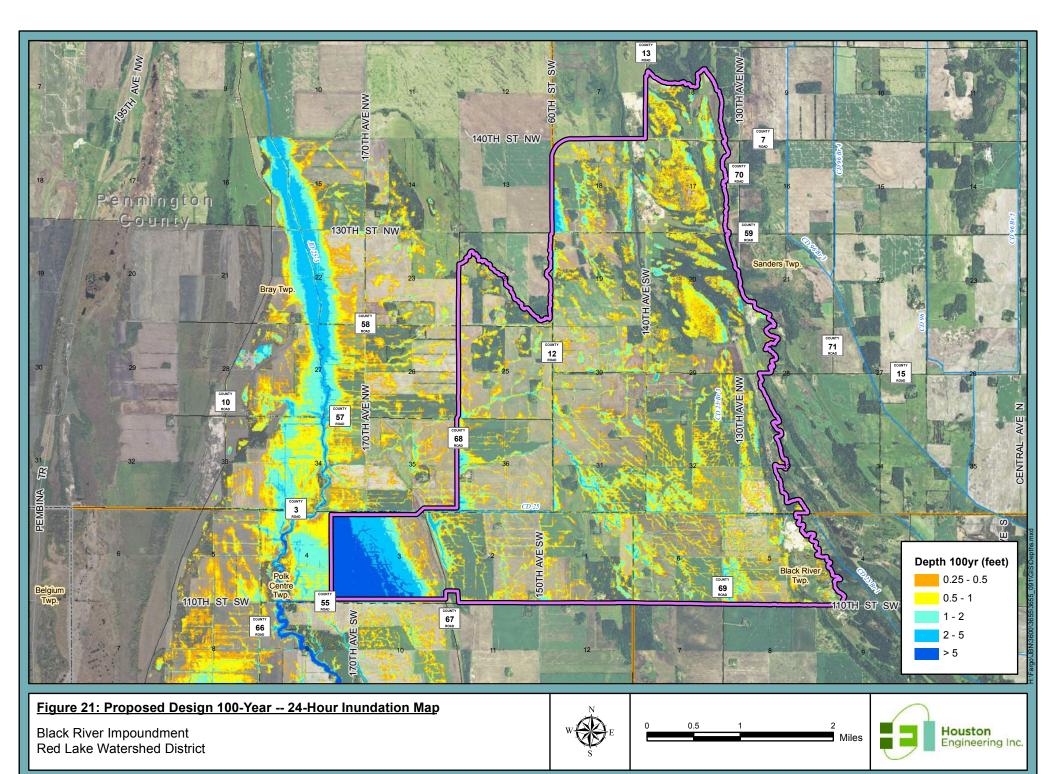


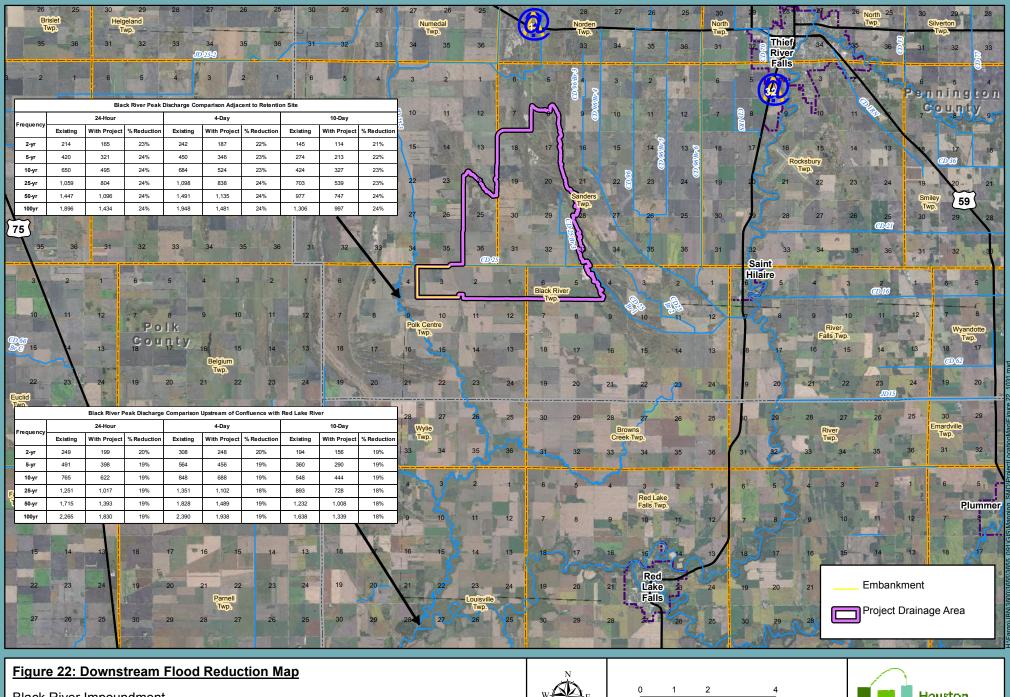









Black River Impoundment Red Lake Watershed District



Red Lake Watershed District

Black River Impoundment Red Lake Watershed District

Miles

FIGURE 23 OPINION OF PROBABLE COST BLACK RIVER IMPOUNDMENT PROJECT - RLWD PROJECT #176 RED LAKE WATERSHED DISTRICT

	RED LAKE WA	TERSHED DISTRIC		-		
No.	Item	Unit	Quantity	Unit Price	Ι	Ditch System Costs
1	MOBILIZATION	Lump Sum	1	\$ 100,000.00	\$	100,000
2	COMMON EXCAVATION (DIV/OUTLET DITCH)	C.Y.	407,800	\$ 2.00	\$	815,600
3	EMBANKMENT	C.Y.	444,525	\$ 3.00	\$	1,333,575
4	CLEARING AND GRUBBING	Acre	4.00	\$ 1,500.00	\$	6,000
5	REMOVE PIPE CULVERT	Lin. Ft.	1,500	\$ 5.00	\$	7,500
6	RIPRAP CLASS II	C.Y.	400	58.00	\$	23,200
7	RIPRAP CLASS III	C.Y.	3,290	58.00	\$	190,820
8	RIPRAP CLASS IV	C.Y.	600	58.00	\$	34,800
9	PAVEMENT REMOVAL	SY	110	6.00	\$	660
10	TYPE SP 12.5 WEARING COURSE MIXTURE (2,B)	TON	120	100.00	\$	12,000
11	CLASS 5 AGGREGATE BASE (CV) P	CY (P)	300	20.00	\$	6,000
12	GRANULAR BEDDING (CV)	CY (P)	975	14.50	\$	14,138
13	CLASS 1 SHOULDERING (CV)	CY (P)	60	25.00	\$	1,500
14	CLASS 1 AGGREGATE SURFACING (CV)	CY (P)	825	10.00	\$	8,250
15	18" CSP (16 GA.)	Lin. Ft.	2,500	25.00	\$	62,500
16	18" CSP Steel Flap Gates	Each	50	275.00	\$	13,750
17	24" CSP (16 GA.)	Lin. Ft.	500	30.00	\$	15,000
18	24" CMP Steel Flap Gates	Each	10	300.00	\$	3,000
19	35 x 24 CSPA	Lin. Ft.	150	65.00	\$	9,750
20	42 x 29 CSPA	Lin. Ft.	150	72.00	\$	10,800
21	57 X 38 CSPA	Lin. Ft.	100	100.00	\$	10,000
22	64 X 43 CSPA	Lin. Ft.	150	110.00	\$	16,500
23	71 X 47 CSPA	Lin. Ft.	150	170.00	\$	25,500
24	73 X 55 CSPA	Lin. Ft.	150	175.00	\$	26,250
25	87 X 63 CSPA	Lin. Ft.	200	185.00	\$	37,000
26	95 X 67 CSPA	Lin. Ft.	50	195.00	\$	9,750
27	103 X 71 CSPA	Lin. Ft.	130	250.00	\$	32,500
28	117 X 79 CSPA (BEVELED ENDS)	Lin. Ft.	150	305.00	\$	45,750
29	142 X 91 CSPA (BEVELED ENDS)	Lin. Ft.	100	400.00	\$	40,000
30	35 x 24 GS APRON	Each	6	455.00	\$	2,730
31	42 x 29 GS APRON	Each	6	470.00	\$	2,820
32	57 X 38 GS APRON	Each	4	635.00	\$	2,540
33	64 X 43 GS APRON	Each	6	990.00	\$	5,940
34	71 X 47 GS APRON	Each	6	1,100.00	\$	6,600
35	73 X 55 GS APRON	Each	6	1,300.00	\$	7,800
36	87 X 63 GS APRON	Each	8	2,000.00	\$	16,000
37	95 X 67 GS APRON	Each	2	2,500.00	\$	5,000
38	103 X 71 GS APRON	Each	4	3,000.00	\$	12,000
39	4' x 4' RC BOX CULVERT	Lin. Ft.	80	450.00	\$	36,000
40	12' x 5' RC BOX CULVERT	Lin. Ft.	80	725.00	\$	58,000
41	14' x 7' RC BOX CULVERT	Lin. Ft.	100	800.00	\$	80.000
42	4' x 4' RC BOX CULVERT END SECTIONS	Each	2	4,500.00	\$	9,000
43	12'x 5' RC BOX CULVERT END SECTIONS	Each	2	7,200.00	\$	14,400
44	14' x 7' RC BOX CULVERT END SECTIONS	Each	2	9,500.00		19,000
45	PRINCIPLE OUTLET STRUCTURE (PIPE, RISER)	Lump Sum	1	175,000.00	\$	175,000
46	TRAFFIC CONTROL	Lump Sum	1	5,000.00	\$	5,000
47	SEEDING	Acre	300.0	55.00	\$	16,500
48	SEED, MIXTURE 25-141	Pound	17,700	2.75	\$	48,675
49	MULCH MATERIAL, TYPE 1	Ton	600.0	75.00		45,000
50	DISK ANCHORING	Acre	300.0	18.00	\$	5,400
51	EROSION AND SILTATION CONTROL	L.S.	1	6,000.00	\$	6,000
52	FERTILIZER, TYPE 1	Ton	37.5	800.00	\$	30,000
Construct	ion Total *			1	\$	3,521,500
	tingencies (10%)					352,150
	ineering (Design, Construction Staking and Observation)					595,000
Materials Testing						25,000
	ironmental Mitigation					70,000
Legal Costs						45,000
Utilities (Telephone, Power)						200,000
Administration (includes Board and Viewers' Costs)						200,000
Impoundment Fee Title & Flowage Easement						
						1,849,615
Permanent Ditch Easement, 95 acres @\$2050/acre						194,750
Temporary Construction Easement, 103 acres @ \$300/acre OTAL PROJECT COSTS *						30,900
UTAL F	KOJECT COSTS *				\$	6,908,92

APPENDIX A

RRWMB Prioritization Worksheet

RED RIVER WATERSHED MANAGEMENT BOARD PRIORITIZATION WORKSHEET for FLOOD DAMAGE REDUCTION PROJECTS

This worksheet shall be used by Member Watershed Districts in determining the initial feasibility of pursuing a potential site for project development and shall provide a completed form for the proposed project's Step II application. The RRWMB shall utilize this form in determining the priority for funding of each proposed project. In addition, the RRWMB and the sponsoring Watershed District shall utilize the Technical Advisory Committee (TAC) recommendation which will include the established "Star Value Method" in making project comparisons. The final ranking of each project may be changed periodically based on the ranking of newly proposed projects. When a proposed project has received Step III approval, the ranking score shall be final. Individual component issues of each project are to be ranked by using both technical and established policy consideration as adopted in the "Governing Documents" publication.

This document is divided into five separate sections. Each section shall be evaluated individually as deemed appropriate for each proposed flood damage reduction project and collectively in determining the final prioritization ranking for funding from the RRWMB.

BLACK RIVER IMPOUNDMENT PROJECT - RLWD

SECTION I

Choose the description option that best describes the proposed project in each of the following categories and place that ranking number in the blank provided. Then add the rankings for issues A through E to provide the total score.

The ranking score for this project in Section I is: $\underline{92}$.

A. DOWNSTREAM PEAK-FLOW TIMING ANALYSIS

- 0. The proposed project will not reduce downstream peak flows on the tributary stream.
- 10. The proposed project will reduce downstream peak flows on the tributary stream.
- 18. The proposed project will reduce peak flows on the Red River.
- 20. The proposed project will reduce peak flows at that point on the Red River that includes the flow contribution from all Minnesota tributaries.

Number <u>20</u> best describes this proposed project.

B. DESIGNED STORAGE VOLUME

(Calculated up to emergency spillway elevation.)

دد

دد

ςς

- 4. One year (Spring runoff storage capacity.)
- 8. Five year
- 12. Ten year
- 16. Twenty-five year "
- 18. Fifty year
- 20. One hundred year

Number <u>12 (3.9"</u> best describes this proposed project.

C. LOCATION OF PROPOSED PROJECT

(Ability to control flow.)

This location will allow for the construction of the following designed projects:

- 4. Off channel automatic draw-down. (Diversion of flood peaks only.)
- 8. Off channel automatic draw-down. (Capable of 100% flow diversion.)
- 8. On channel automatic draw-down.
- 16. Off channel gated draw-down. (Diversion of flood peaks only.)
- 20. Off channel gated draw-down. (Capable of 100% flow diversion.)
- 20. On channel gated draw-down.

Number <u>20</u> best describes this proposed project.

D. RETENTION TIME CAPABILITY

- 2. The subject watershed's average flow detention time will be less than 5 days.
- 4. The subject watershed's average flow detention time will be 5-10 days.
- 10. The subject watershed's average flow detention time will be 10-15 days.
- 16. The subject watershed's average flow detention time will be 15-20 days.
- 20. The subject watershed's average flow detention time will be 20-30 days.

Number <u>20</u> best describes this proposed project.

E. PROPOSED OUTLET DESIGN

- 4. Automatic draw-down storage pool with an identified downstream protected area within a minor watershed that is a tributary to the primary watershed of the District.
- 6. Gated draw-down storage pool with identified downstream protected area within a minor watershed that is a tributary to the primary watershed of the District.
- 10. Automatic draw-down storage pool with an identified protected area that extends downstream through the District's primary watershed terminating at the Red River.
- 12. Gated draw-down storage pool with an identified protected area that extends downstream through the District's primary watershed terminating at the Red River.
- 18. Automatic draw-down storage pool with an identified downstream protected area that includes the minor, primary and Red River watersheds.
- 20. Gated draw-down storage pool with an identified protected area that includes the minor, primary and Red River watersheds.

(Protected area means: The area that would be provided a measurable degree of flood damage reduction.)

Number <u>20</u> best describes this proposed project.

SECTION II - ENVIRONMENTAL ENHANCEMENTS ACCOMPLISHED

A. This proposed project has addressed the following natural resource goals as identified in the "Red River Basin Flood Damage Reduction Work Group Agreement" and incorporated the appropriate goal issues into the final engineers report. Each goal, if incorporated into the final design, shall have an equal value of 2.5. The accumulative value of each goal accomplished in this project shall be the total score for this section.

This section shall be completed by the Watershed District Project Team.

Check each goal that has been incorporated into this project with an X.

- \underline{X} 1. Manage streams for natural characteristics.
- \underline{X} 2. Enhance riparian and in-stream habitat.
 - X 3. Provide diversity of habitats for stable populations to thrive over a long period.
- <u>X</u> 4. Provide connected, integrated habitat including compatible adjacent land uses.

- X 5. Enhance or provide seasonal flow regimes in streams for water supply, water quality, recreation, and support biotic communities.
- <u>X</u> 6. Provide recreational opportunities.
- \underline{X} 7. Improve water quality.
- <u>X</u> 8. Protect water quality.
- 9. Manage lakes for natural characteristics.

The total score for this category is 20.

B. DISTRICT'S MEDIATION PROJECT TEAM RECOMMENDATION

The District Project Team has fully processed the proposed project through problem identification, alternative evaluation and selection and recommends the following:

- 0. The proposed project is not a significant contribution to flood damage reduction.
- 14. The proposed project is significant but immediate implementation is not a high priority.
- 20. The proposed project is very significant and should be implemented at the earliest possible date.

Number <u>20</u> best describes the Project Team recommendation.

SECTION III - TECHNICAL ADVISORY COMMITTEE RECOMMENDATION

Note: The TAC recommendation shall include the utilization of the "Star Value Method" to determine the RRWMB cost of the storage capability of the proposed project and an evaluation of issues A through G of this worksheet with a ranking score for each issue. In addition, the TAC shall provide a written technical narrative providing suggestions for changes that would enhance the proposed project and/or an evaluation of the merits of the proposed project in fulfilling the flood damage reduction goals of the RRWMB.

The Star Value Method ranking score for this project is: $_10$

The value system utilized to determine the ranking score for potential projects is:

Score	RRWMB Dollar Cost/Star Value
2	
6	40 to 100

10	
16	10.1 to 20
18	5 to 10
20	0 to 5

The TAC ranking scores for the issue sections of this prioritization worksheet are as follows:

A. B. C. D. E. F.

The technical evaluation narrative for this proposed project is as follows:

SECTION IV - PROJECT FUNDING AGREEMENT CONDITIONS

- A. This section is to be utilized by the Watershed District's Board of Managers as a guide in seeking the appropriate level of funding for a proposed project and by the RRWMB in determining the level of funding to be awarded. Utilize and fill out only <u>one</u> of the three prioritizing schedules (*) that best applies to the proposed project. Note: "Other interests" means funds received from sources other than RRWMB tax levy that are secured to reduce the RRWMB/WD total commitment.
 - * The proposed project provides flood damage reduction solely within a minor watershed of the District and funding will be requested from the RRWMB for:
 - 2. Seventy-five percent of the total cost not funded by other interests.
 - 4. Fifty percent of the total cost not funded by other interests.

- 6. Twenty-five percent of the total cost not funded by other interests.
 - * The proposed project provides flood damage reduction downstream to the outlet into the Red River and funding will be requested from the RRWMB for:
- 10. Seventy-five percent of the total cost not funded by other interests.
- 14. Fifty percent of the total cost not funded by other interests.
- 18. Twenty-five percent of the total cost not funded by other interests.
 - * The proposed project provides flood damage reduction downstream to the common outlet into the Red River from all contributing Minnesota watersheds and funding will be requested from the RRWMB for:
- 12. Seventy-five percent of the total cost not funded by other sources.
- 16. Fifty percent of the total cost not funded by other interests.
- 20. Twenty-five percent of the total cost not funded by other interests.

Number <u>14 (66.67% 3rd Section)</u> best describes this proposed project.

B. PROJECT LOCATION PROPERTY ACQUISITION

The proposed project's required construction/pool land area will be acquired by:

- 2. Purchase with ownership title held be an entity other than the Watershed District.
- 4. Purchase with ownership title held by the Watershed District.
- 6. Purchase held by the Watershed District with prescribed total financial recovery.
- 8. Permanent easement by the Watershed District on privately owned land.
- 10. Permanent agreement and/or easement (no local cost) on State or Federal land.

Number <u>4 & 8</u> best describes this proposed project.

SECTION V

Section V is composed of three separate issue-orientated papers. Use form A when it is requested by the RRWMB. Use form B when applying for funding of programs or studies. Use form C for all applications for funding assistance.

A. QUALIFICATIONS FOR A FUNDING APPLICATION

*This section shall be utilized only by the RRWMB in the event that the adopted rating system in sections I-IV has resulted in an equal comparative scoring value for projects proposed for funding. This section is not to be utilized by an applicant for funding.

Rationale shall be provided in letter form by the applicant, upon receiving a request from the RRWMB, stating the need for funding assistance which could be described as one of the following:

The District Construction Account (1/2 RRWMB Levy) has adequate funds but the District feels it is entitled to funds because of prior annual levy allocations.

The District Construction Account has adequate funds but they are needed for other project development costs. (Must list proposed projects and time line for progressing.)

The District Construction Account is minimal because of low annual levy receipts.

The District Construction Account is minimal because of funding previously built flood damage reduction projects. (Must list projects built and funding expenditures.)

B. PRIORITIZATION PROCESS FOR CONSIDERING PROGRAMS AND STUDIES

Consideration for the funding of Programs, Studies or other Flood Damage Reduction Initiatives by Member Watershed Districts shall be ranked for funding eligibility in the following order of priority. The lowest ranking shall be #1 and the highest #7.

- 1. The initiative is not related to gaining information toward flood damage reduction.
- 2. The information sought in this initiative is primarily for state or federal agency use, but is needed for gaining information related to flood damage reduction.
- 3. The information sought in this initiative is primarily for use in the applicant District.
- 4. The information sought in this initiative is needed by an individual District for their own use, but could be a pilot for establishing a methodology that could be used by all.
- 5. The information sought in this initiative will be conducted within an individual District, but the information gained can be utilized by all.
- 6. The information sought in this initiative is being gathered in all cooperating Districts and the information gained is necessary for furthering flood damage reduction initiatives.

7. The information sought in this initiative will be applicable to, and utilized in, all member Districts and is essential for the development of flood damage reduction initiatives within all of the Minnesota portion of the Red River Basin.

Number _____ best describes this proposal.

C. DISTRICT BOARD OF MANAGER'S RECOMMENDATION

The <u>Red Lake</u> Watershed District's

Board of Mangers have utilized the "Project Prioritization Worksheet" in

progressing this proposed project and have fully evaluated all aspects of the

proposed project request funding from the RRWMB for <u>66.67%</u> percent of the

project's total cost not funded by other sources. It is anticipated that construction

can be accomplished and therefore funding will be required in:

- 1. Three to five years.
- 2. Two to three years.
- X 3. One to two years.
- 4. Within one year.

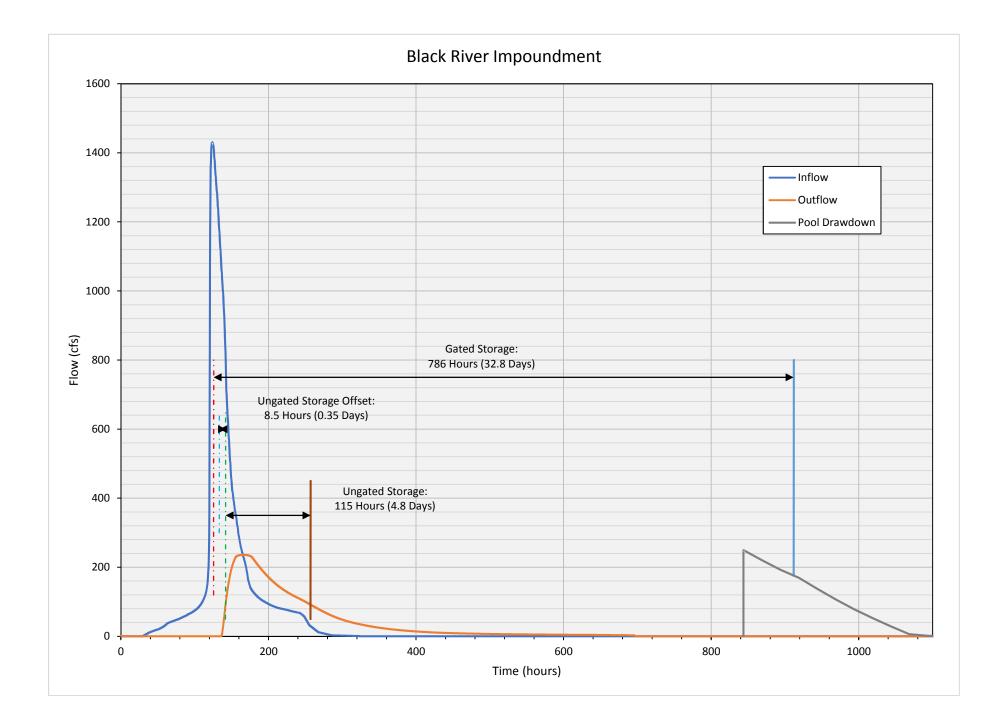
This worksheet has been completed for the proposed project known as

Black River Impoundment Project – RLWD Project #176

by the <u>Red Lake</u> Watershed District.

on this _____ day of ______, 20 ____.

President


Secretary

* Note: The RRWMB shall provide the applicant with a signed form certifying the commitment and shall describe any variation from the "Project Evaluation Manual."

APPENDIX B

Star Value Computation

[
Star Value Cor	nputation V	Vorksheet	•		lues only in		
Red River Watershed Management Board					aded. All ot		are
				Compute			
Project Name:	Black River Imc	oundment	Step 2	Enter Pr	oiect Name.	(Status eq	Step)
Watershed District:				Enter Project Name. (Status eg Step) Enter Name of Watershed District.			
Project Location:	Red Lake Polk Centre Township			Enter Project Location.			
	Poik Centre To	wiisnip		LINGTIN		JII.	
Estimated Total Cost:	\$ 6,900,000						
RRWMB Cost:	\$ 2,300,000	CPI (1984=100)	CPI (2016=100)	Enter the	e estimated	project cost	s.
Year of Estimate:	2016		100.00	Ratios of	f the Consur	mer price in	dev read
Adj. to SummaryAll Base Yr:	2000	172.20	71.75		CPI worksh		uex reau
	2000	172.20	11.75				
Drainage Area (square miles)	16.8	Enter the draina	age area in square	niles used t	o compute t	he runoff vo	olume.
			Adj. Storage				
Storage Volume(s):	Acre-feet	Inches	(ac-ft)		sted storage		rage is ment Factor
Drawdown	0	0.00	0		in reduce the		
Gated (1)	2,341	2.61	2,341				torage, 2nd
Gated (2)	0	0.00	0		gated (2) st		
Ungated (to emergency spillway)	1,116	1.25	1,087) storage an	d last from	the
Total Storage (8.1 inches Max.)	3,457	3.86	3,428	drawdow	n storage.		
			-,				
Volume Adjustment Factor	0.99	29					
Est. of Ungated Detention Time	Volume (ac-ft)	Elevation (ft)	Discharge (cfs)				
Emergency Spillway	1,116	0	0				
10% of Ungated	112	0	0	Note: thi	s section is	provided for	r reference
90% of Ungated Volume	1,004			only. The values are not used in the			
	Average Discha	rge (cfs)	0	calculations.			
	Discharge in AF		0				
	Average Detenti	, ,	not applicable				
Detention Time:							
Gated (1) from Operation plan	33.0	Enter gated det	ention time for the	1st category	of gated sto	orage.	
Gated (2) from Operation plan	0.0	Enter gated det	ention time for the	2nd category	y of gated st	orage.	
UnGated (from Operation Plan or above)	4.8	Enter ungated o	Enter ungated detention time. (Center of Mass to Center of mass)				
Ungated Storage Offset	0.4	Offset of center	of mass of inflow h	ydrogragh to	o center of r	nass of stor	age.
Average Time Interval between				Evicting	Rolativo T is	s based on t	the average
Routed Site Peak and Red River Peak				•	rval betwee		•
(days). (Negative is ahead of peak, positive		Existing			d the RRN.		·
is after peak)	1.0	Relative T	0.37				
	Routed	Adj. Storage					
Calculation of Star Value	Relative T	(Ac-ft)					
Drawdown Storage (30 - 0.43)	29.57	. ,		Routed r	elative T is	the value of	the
Gated (1) Storage (27.76 - 0.43)	29.37		63,973		n times com		
Gated (1) Storage (27.76 - 0.43)	0.00		-	•			gure 3. The
Ungated (2) Storage (0.43 - 0.43)	4.12		4,473	•	Relative T is	ssubtracted	from the
	4.12	,		STAR V	Relative T.		
Star Value		3,428	68,446				
		2016 dollars	2000 dollars				
Total Cost per Star Value		\$ 100.81	\$ 72.33	Total Co	st divided by		
RRWMB Cost per Star Value		\$ 100.81	\$ 72.33 \$ 24.11		Cost divided by	-	
		ψ 33.00	φ 24.11	IN R. WIVIB		U DY STAR	value
Prepared By:	Tony Nordby (H	ouston Engineeri	ng, Inc.)	Enter na	me of prepa	arer	1
Source of Data:	Tony Nordby (Houston Engineering, Inc.) Step 2 Submittal			Enter source data.			
Frequency/Date of Preparation:	100yr 10day 3-Oct-17			Enter frequency and date.			
requency bale of Freparation.	Tody Today		0-001-17	LINGTHE	yuonoy anu	3010.	

APPENDIX C

MNDNR Environmental Review Need Determination

DEPARTMENT OF NATURAL RESOURCES

Memo

Date: 07/27/2017

To: Tony Nordby, Houston Engineering

From: Kate Fairman, Planning Director Environmental Review Unit, Minnesota Department of Natural Resources

RE: Environmental Review Need Determination for Black River Impoundment Project – Red Lake Watershed District

Project Background

The Red Lake Watershed District is proposing to develop an impoundment to divert seasonal flows and minimize potential downstream flooding. The impoundment would be located within Polk Centre Township and the drainage area would be from approximately 14 square miles. The project would be composed of diversion ditches, an embankment, the impoundment and the project drainage area (see Attachment 1: Black River Project Embankment and Drainage Area). The impoundment would be used seasonally as needed and would otherwise be operated as a dry impoundment that does not propose to maintain a pool larger than 160 acres year round.

The embankment proposed as part of the project would create a dam subject to Minnesota Department of Natural Resources (DNR) Dam Safety Permitting. The DNR Dam Safety Permitting program has preliminarily identified the proposed embankment as a Class 2 hazard dam, since there are existing residences downstream. The total proposed capacity for the embankment would be for 3,519 acre feet, with a maximum water height of 14 feet behind the embankment.

The purpose of this memo is to:

- 1. Determine responsibilities for environmental review document preparation and review. And
- 2. Determine the environmental review requirements associated with the Project.

Responsible Governmental Unit (RGU) Determination

Minnesota Rules Chapter 4410, which defines the environmental review program as overseen by the Environmental Quality Board, was reviewed to determine if the project based on the information provided was exempt from environmental review, requires mandatory EAW preparation, or requires mandatory EIS preparation. A Responsible Government Unit (RGU) is defined by Minnesota Rules 4410.0200 as the governmental unit that is responsible for preparation and review of environmental documents (e.g., EAW, EIS). In the review of the mandatory EAW categories, mandatory EIS categories, and exemptions, the

project was identified to include elements that could trigger an EAW in one or more of the following categories listed in Minnesota Rules 4410.4300:

- Subpart 24.B. For a new permanent impoundment of water creating additional water surface of 160 or more acres or for an additional permanent impoundment of water creating additional water surface of 160 or more acres, the DNR shall be the RGU.
- Subpart 24.C. For construction of a dam with an upstream drainage area of 50 square miles or more, the DNR shall be the RGU.
- Subpart 26. Stream diversion. For a diversion, realignment, or channelization of any designated trout stream, or affecting greater than 500 feet of natural watercourse with a total drainage area of ten or more square miles unless exempted by part 4410.4600, subpart 14, item E, or 17, the local government unit shall be the RGU.
- Subpart 27.A. For projects that will change or diminish the course, current, or cross-section of one acre or more of any public water or public waters wetland except for those to be drained without a permit pursuant to Minnesota Statutes, chapter 103G, the local government unit shall be the RGU.
- Subpart 36. A. For golf courses, residential development where the lot size is less than five acres, and other projects resulting in the permanent conversion of 80 or more acres of agricultural, native prairie, forest, or naturally vegetated land, the local government unit shall be the RGU, except that this subpart does not apply to agricultural land inside the boundary of the Metropolitan Urban Service Area established by the Metropolitan Council.

Since this project is not proposed by a state agency, the applicable RGU is listed within each mandatory category. Subparts 26, 27.A, and 36.A identify the LGU as the RGU. Subparts 24.B. and 24.C. identify the DNR as the RGU, so DNR must make a determination on the need for an EAW regarding the thresholds in Subparts 24, parts B and C. Since DNR does not have RGU responsibilities for Subparts 26, 27.A, and 36.A for this project, the application of these categories and determination of environmental review need is the responsibility of the appropriate LGU.

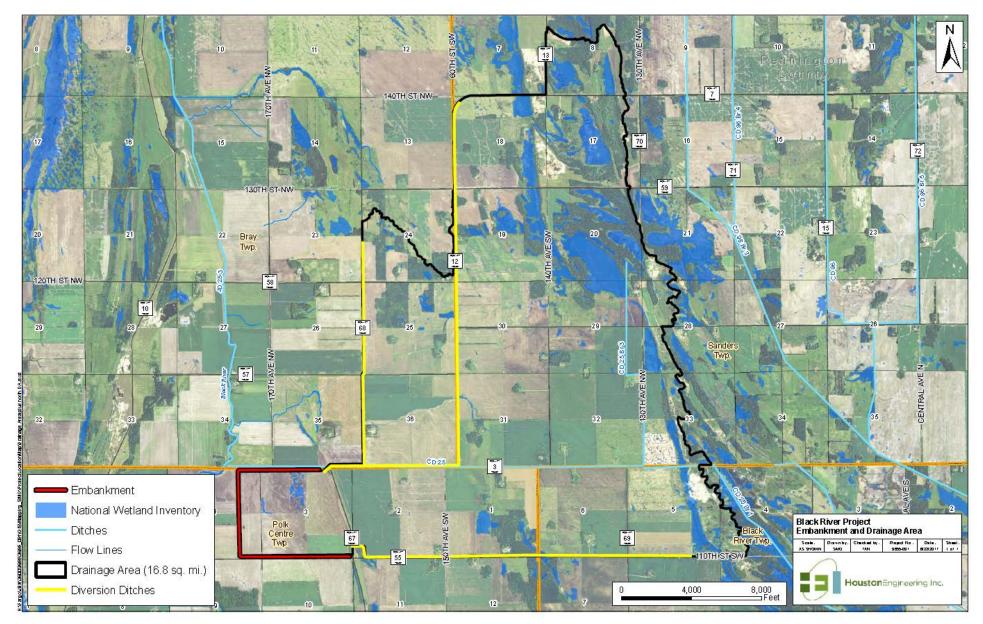
EAW Need Determination

Subpart 24.B. Threshold: For the project to meet the threshold, it must be determined whether the proposed impoundment will be "permanent" and whether it will create an additional water surface of 160 acres or more.

• "Permanent": Minnesota Rules 4410.0200 do not include a definition for "permanent," or "permanent impoundment." However, Minnesota Rules chapter 6115, governing public water resources, includes several references to "temporary" uses of water resources, which routinely indicate that uses shorter than two years constitute "temporary" uses. Therefore, since the project

is proposed to be an impoundment which would store water for less than two years per event, and would otherwise be operated as a dry impoundment, it would not likely exceed the surrogate definition of "temporary," and therefore is not a "permanent impoundment." The project therefore does not meet this component of the threshold.

• Water surface area: The total proposed project area would be approximately 800 acres, but is only proposed to be used on a seasonal basis. Additionally, it is not proposed to create surface water area greater than 160 acres on a year-round basis. The DNR Dam Safety permit requirements will include the development of an Operation and Maintenance Plan that can include restrictions on water storage and usage, which can ensure that surface water area is not greater than 160 acres on a year-round basis. The project therefore does not meet this component of the threshold.


Subpart 24.C. Threshold: For the project to meet the threshold, it must be determined if the project constitutes the "construction of a dam" and what the upstream drainage area of the project would be.

- "Construction of a dam": The proposed project includes the construction of an embankment that has been preliminarily identified as a Class 2 hazard dam and therefore must receive a Dam Safety permit. The proposed project meets this component of the threshold.
- Upstream drainage area: The proposed project has an upstream drainage area of 14 square miles, which does not meet the 50 square mile threshold. The project therefore does not meet this component of the threshold.

Based on the above analysis, the project does not meet the thresholds in Subparts 24.B or 24.C. It is recommended that the project proposer contact the LGU for a determination of environmental review need based on the other potentially applicable categories.

Please feel free to contact me with questions or additional details that could change this environmental review need determination.

Cc: Larry Kramka, Houston Engineering Randall Doneen, DNR Stephanie Klamm, DNR Theresa Olson, DNR Jason Boyle, DNR Myron Jesme, Red Lake Watershed District

Attachment 1: Black River Project Embankment and Drainage Area

APPENDIX D

Field Wetland Inventory Report (Proposed Impoundment Site)

FIELD WETLAND INVENTORY REPORT

Black River Impoundment, Pennington County, MN

Prepared for:

The Red Lake Watershed District 1000 Pennington Ave Thief River Falls, Minnesota

I hereby certify that this report was prepared by me or under my direct supervision.

philip >-

Mark D. Aanenson, CWD Houston Engineering Inc.

Date: December 13, 2016 HEI project no. 3655-091

Houston Engineering Inc.

EXECUTIVE SUMMARY

Staff from Houston Engineering, Inc. (Houston Engineering) completed the components of a field investigation of the subject area to identify and delineate areas meeting wetland criteria for a project on behalf of the Red Lake Watershed District. The subject property is in Township 152N Range 45W Sections 3 and 4, in Pennington County, Minnesota. Results of the field wetland inventory indicate there are seven wetland areas located within the project footprint. The total area of wetlands inventoried is 5.59 acres. Most these wetlands are natural depressions or groundwater seeps of the PSS1B type (palustrine, scrubshrub, saturated), (Cowardin et al. 1979). The outlet for the project will be the Black River located just west of the main project footprint.

1 INTRODUCTION

Staff from Houston Engineering, Inc. completed a field investigation in accordance with the 1987 Army Corps of Engineers Wetland Delineation Manual, and the Midwest Supplement Delineation Manual. The purpose of this report is to identify the wetlands and water resources that could be impacted by a project. This investigation was completed on November 16, 2016. This is outside of the growing season; consequently, additional fieldwork may be necessary if field delineation is necessary for compensatory mitigation purposes.

2 LOCATION

The subject property is in Section 3 and 4 of T152N R45W in Pennington County, Minnesota, (**Appendix A: Location Map**). The project site is about 9 miles west of Saint Hilaire, located on the south side of County Highway 3. The area consists generally of pastureland, cultivated agricultural land and some forested lands.

3 METHODS

For the wetland inventory work we followed the methods described in the 1987 Manual for "routine" delineations. Additionally, methodology from the Great Plains Regional Supplement to the Corps of Engineers Wetland Delineation Manual. Prior to the field delineation, offsite resources were reviewed to identify potential wetland habitats and provide guidance for the field investigation of wetlands at the project site. These included the U.S. Fish and Wildlife Service National Wetland Inventory (NWI 2011) and the county digital soil surveys (USDA-NRCS, 2011), as well as current and historical aerial photography.

The following procedures used to determine wetland habitats:

- We sampled vegetation to determine whether or not greater than 50% of the dominant plant species were classified as either obligate wetland, facultative wetland, or facultative plants.
- We sampled the soil using a soil probe to identify soil morphology, redoximorphic features and soil texture. We determined the hydric soil indicators according to Field Indicators of Hydric Soils in the United States; Guide for Identifying and Delineating Hydric Soils, Version 7.0 (USDA-NRCS, 2010).
- We determined wetland hydrology through on-site by observation of hydrologic indicators (US Army Corps of Engineers, 2010). The wetland hydrology determination uses the criteria of the presence of water within 12 inches of the surface for 14 days during the growing season, or within 24 inches of the surface during the dry part of the growing season. We also used aerial photography to assist hydrologic assessment.

Staff from Houston Engineering (Donna Jacob and Mark D. Aanenson) performed fieldwork on November 16, 2016. We marked the wetland boundaries and sample locations using a Trimble Geo 7X handheld GPS unit with centimeter accuracy for those representative plant communities present along the wetland boundaries. Sample points included observations of dominant vegetation, soil profiling including color and texture, and indications of hydrology. We also used additional, undocumented sample points throughout the delineation to verify vegetation, hydric soils, and hydrology. We recorded our observations using data forms and geolocated photographs.

4 **RESULTS**

The entire site was evaluated in the field for the presence of hydrology and hydrophytic vegetation. The areas identified as wetlands were the only areas that contained hydrophytic vegetation, hydrology indicators and hydric soils. The remaining areas were tilled and impacted by surface ditches. Hydric soils generally extended beyond the wetland boundaries at all the wetland sites. Wetland boundaries were determined using a combination of vegetation lines, tillage lines, and topography. This is evident in Wetlands 5 and 6. The boundary of Wetland 5 does not extend east to the tillage line because the vegetation no longer meets wetland criteria, and the boundary of Wetland 6 does extend east of the tillage line into the field. Volunteer wetland species were observed within the tilled field and the topography was similar to the remaining part of the wetland basin.

The riparian areas where the project will likely empty to the Black River were also evaluated for the presence of wetlands. No riparian wetlands were identified. Upland vegetation was present to the top of the riverbanks. These areas are clearly shown in Appendix B, Site Photography. The wetlands identified are shown on the map in (Appendix C: Wetland Inventory Map). The wetland types and sizes are also listed below in Table 1.

Wetland Number	Wetland type (Cowardin et al. 1979)	NWI Listing	Wetland Area (acres)
1	PSS1/EMB	PSS1B	0.38
2	PSS1B	-	1.0
3	PSS1/EMC	-	0.14
4	PEMC	-	0.09
5	PSS1B	-	0.07
6	PSS1B	PSS1B	1.96
7	PSS1B	PSS1B	1.95
		total	5.59

Table 1: Inventoried Wetlands and their Characteristics

Soil descriptions:

Dominant soils within the project site areas are poorly drained and are formed in till, coarse-silty glaciolacustrine deposits and glaciolacustrine deposits over till. The project area is composed of a variety of soil types with slopes ranging between zero to six percent (**Appendix D: Soil Hydric Rating Map**). The most dominant soil is Roliss loam (Hydric rating: 95) and the next prevalent soils are Glyndon loam, Aspen Parkland (Hydric rating: 15) and Strathcona fine sandy loam (Hydric rating: 95). Soil profiles that were taken for each wetland are given in **Appendix E, Wetland Summary Tables**.

Vegetation descriptions:

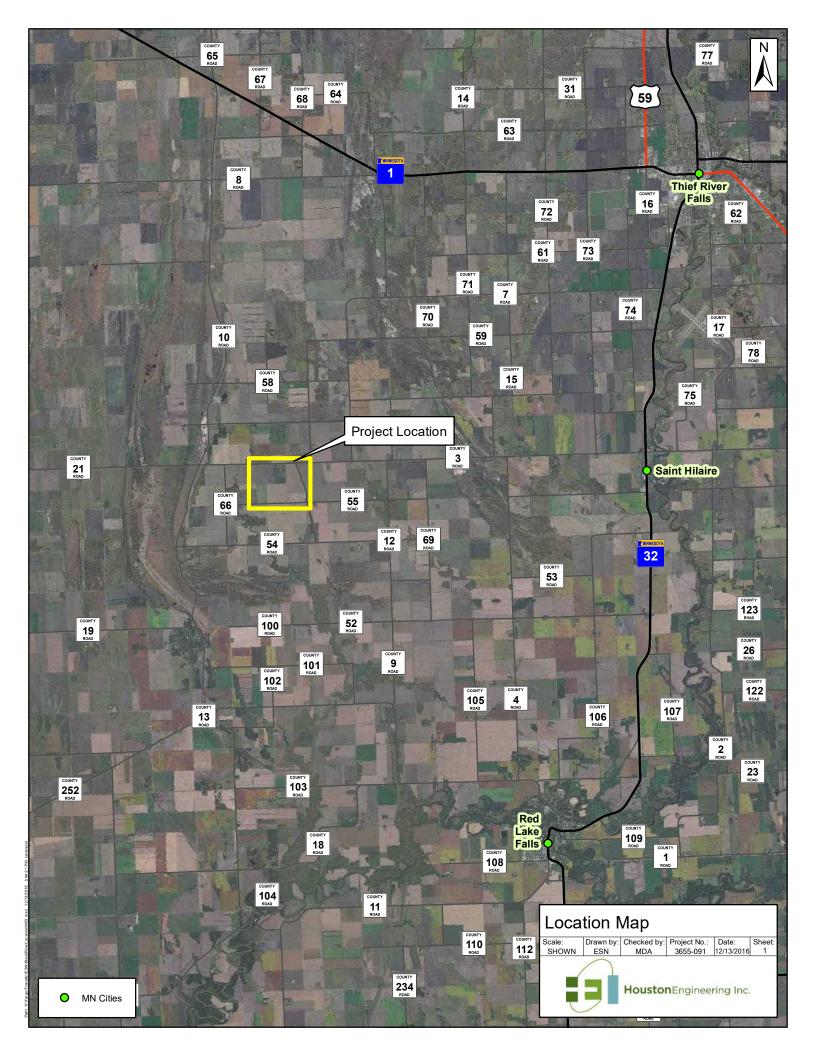
Both emergent and scrub-shrub species were frequently encountered in the wetland areas inventoried. Shrub species commonly found included red twig dogwood (*Cornus alba*), pussy willow (*Salix discolor*), and meadow willow (*Salix petiolaris*). Emergent species commonly found include curled dock (*Rumex crispis*), cord grass (*Spartina pectinata*), reed canary grass (*Phalaris arundinacea*), and giant goldenrod (*Solidago gigantea*). Vegetative species in the wetland areas are listed for each wetland area in **Appendix E, Wetland Summary** Tables. The wetland indicators and native/introduced status is also listed.

5 REFERENCES

Cowardin L M, V Carter, FC Golet, ET LaRoe. 1979. Classification of wetlands and deepwater habitats of the United States. U. S. Department of the Interior, Fish and Wildlife Service, Washington, D.C.

http://www.npwrc.usgs.gov/resource/1998/classwet/classwet.htm (Version 04DEC98).

Lichvar, R.W., D.L. Banks, W.N. Kirchner, and N.C. Melvin. 2016. The National Wetland Plant List: 2016 wetland ratings. Phytoneuron 2016-30: 1-17. Published 28 April 2016. ISSN 2153 733X


MN State Climatology Office (2016) Antecedent Precipitation Worksheet.

http://climate.umn.edu/gridded_data/precip/wetland/wetland.asp (Accessed December 2016).

- Shaw S P, Fredine CG. 1971. Wetlands of the United States. U.S. Fish Wildlife Service. Circular 39. 67 pp.
- U.S. Army Corps of Engineers. 1987. Wetlands Delineation Manual. Wetlands Research Program. Technical Report Y-87-1. Department of the Army, Waterways Experiment Station, US Army Corps of Engineers. Vicksburg, Mississippi, USA.
- U.S. Army Corps of Engineers. 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Great Plains Region (Version 2.0), ed. J. S. Wakeley, R. W. Lichvar, and C. V. Noble. ERDC/EL TR-10-1.Vicksburg, MS: U.S. Army Engineer Research and Development Center.
- USDA-NRCS. 2010. Field Indicators of Hydric Soils in the United States Guide for identifying and delineating Hydric Soils, Version. 7.0 in G.W. Hurt, L.M. Vasilas, and C.V. Noble, editors. USDA – NRCS in cooperation with the National Technical Committee for Hydric Soils.
- USDA-NRCS. 2011, Soil Survey of Minnesota by County (Pennington County). http://websoilsurvey.nrcs.usda.gov/app/ (Accessed November 2016).
- USFWS. 2011. United States Fish and Wildlife Service. National Wetlands Inventory. http://www.fws.gov/wetlands/Data/Mapper.html (Accessed October 2016).

Appendix A

Location Map

Appendix B

Site Photography

Wetland #1

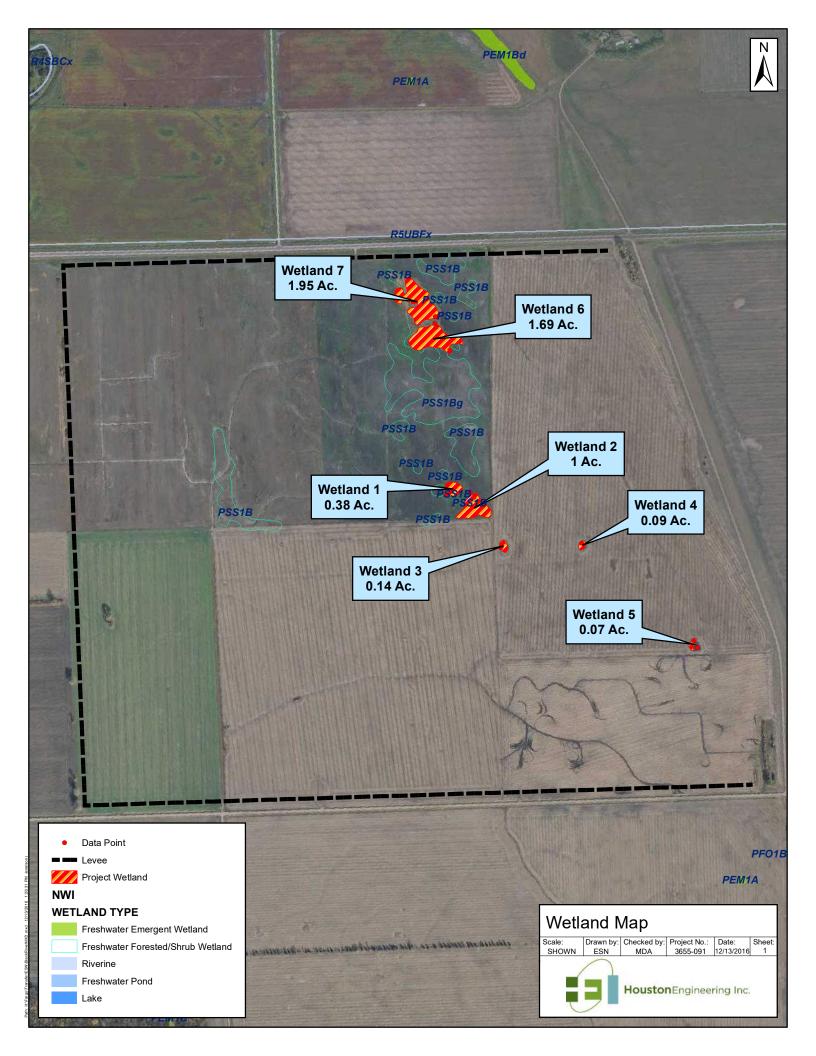
Wetland #2

Wetland #3

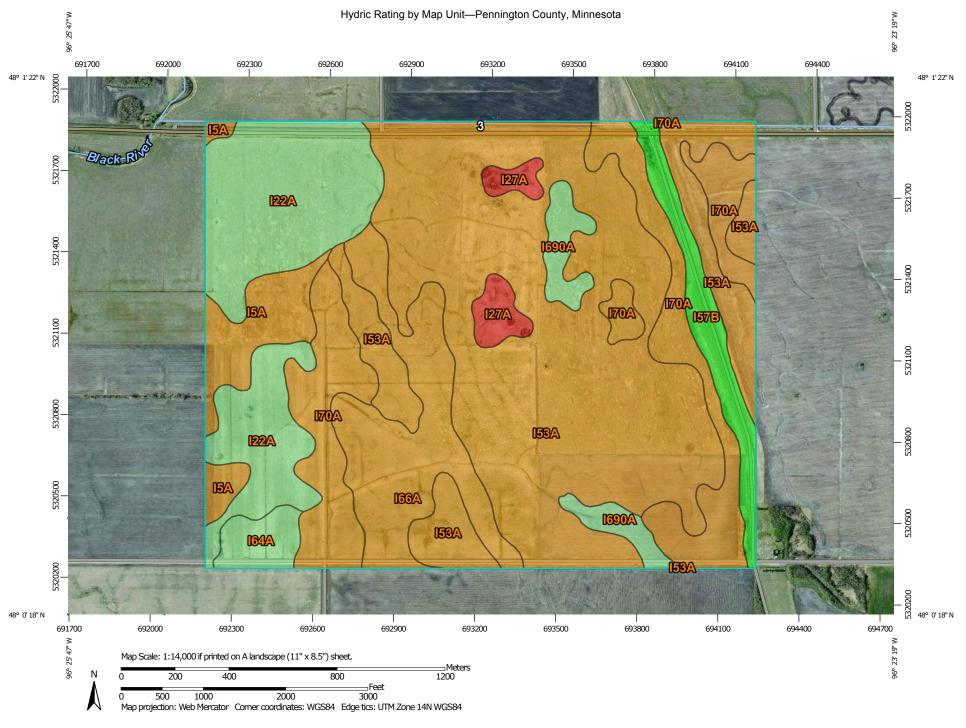
Wetland #4

Wetland #6

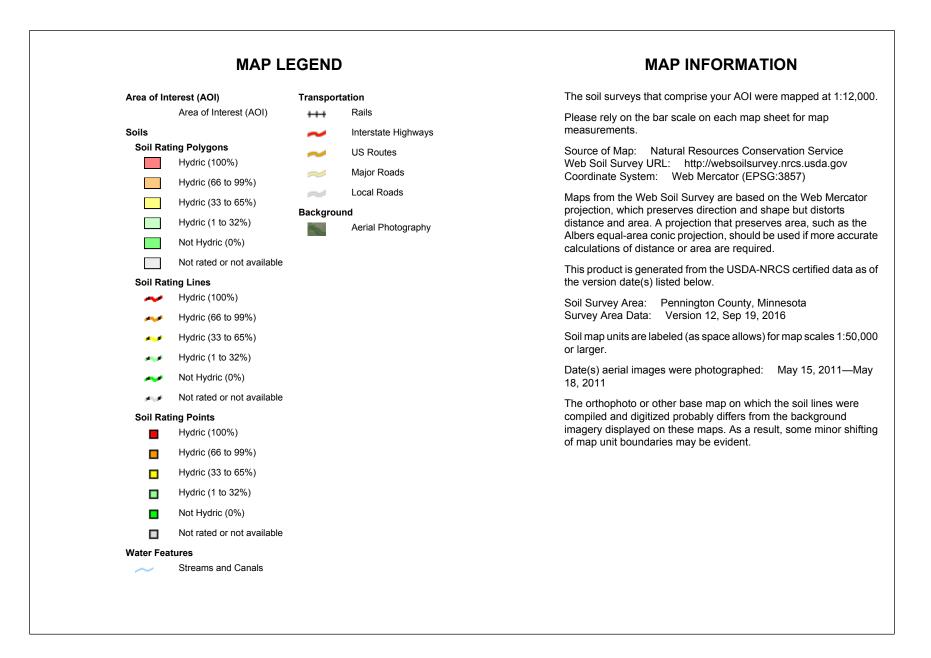
Wetland #5


River Channel

River Channel


Appendix C

Wetland Inventory Map



Appendix D

Soils Map

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 11/29/2016 Page 1 of 5

Hydric Rating by Map Unit

Hydric Rating by Map Unit— Summary by Map Unit — Pennington County, Minnesota (MN113)					
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI	
15A	Borup loam, 0 to 1 percent slopes	92	38.0	4.6%	
122A	Glyndon loam, Aspen Parkland, 0 to 2 percent slopes	15	127.9	15.3%	
I27A	Hamre muck, 0 to 1 percent slopes	100	15.2	1.8%	
153A	Roliss loam, 0 to 2 percent slopes	95	379.0	45.5%	
I57B	Sandberg-Radium complex, 1 to 6 percent slopes	0	32.0	3.8%	
164A	Ulen fine sandy loam, Aspen Parkland, 0 to 2 percent slopes	14	14.6	1.7%	
166A	Vallers loam, 0 to 2 percent slopes	91	82.2	9.9%	
170A	Strathcona fine sandy loam, 0 to 2 percent slopes	95	122.3	14.7%	
1690A	Kittson loam, wet, 0 to 2 percent slopes	5	22.8	2.7%	
Totals for Area of Inte	rest		834.0	100.0%	

Description

This rating indicates the percentage of map units that meets the criteria for hydric soils. Map units are composed of one or more map unit components or soil types, each of which is rated as hydric soil or not hydric. Map units that are made up dominantly of hydric soils may have small areas of minor nonhydric components in the higher positions on the landform, and map units that are made up dominantly of nonhydric soils may have small areas of minor hydric components in the lower positions on the landform. Each map unit is rated based on its respective components and the percentage of each component within the map unit.

The thematic map is color coded based on the composition of hydric components. The five color classes are separated as 100 percent hydric components, 66 to 99 percent hydric components, 33 to 65 percent hydric components, 1 to 32 percent hydric components, and less than one percent hydric components.

In Web Soil Survey, the Summary by Map Unit table that is displayed below the map pane contains a column named 'Rating'. In this column the percentage of each map unit that is classified as hydric is displayed.

Hydric soils are defined by the National Technical Committee for Hydric Soils (NTCHS) as soils that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part (Federal Register, 1994). Under natural conditions, these soils are either saturated or inundated long enough during the growing season to support the growth and reproduction of hydrophytic vegetation.

The NTCHS definition identifies general soil properties that are associated with wetness. In order to determine whether a specific soil is a hydric soil or nonhydric soil, however, more specific information, such as information about the depth and duration of the water table, is needed. Thus, criteria that identify those estimated soil properties unique to hydric soils have been established (Federal Register, 2002). These criteria are used to identify map unit components that normally are associated with wetlands. The criteria used are selected estimated soil properties that are described in "Soil Taxonomy" (Soil Survey Staff, 1999) and "Keys to Soil Taxonomy" (Soil Survey Staff, 1993).

If soils are wet enough for a long enough period of time to be considered hydric, they should exhibit certain properties that can be easily observed in the field. These visible properties are indicators of hydric soils. The indicators used to make onsite determinations of hydric soils are specified in "Field Indicators of Hydric Soils in the United States" (Hurt and Vasilas, 2006).

References:

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18.

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service. U.S. Department of Agriculture Handbook 436.

Soil Survey Staff. 2006. Keys to soil taxonomy. 10th edition. U.S. Department of Agriculture, Natural Resources Conservation Service.

Rating Options

Aggregation Method: Percent Present Component Percent Cutoff: None Specified Tie-break Rule: Lower Appendix E

Wetland Summary Tables

Black River Impoundment Site, Pennington County, Minnesota – Great Plains Region

Fieldwork Date : November 16, 2016

Wetland Site 1

Species	Indicator Status	Native/Non-native
Herbs:		
Ambrosia artemisiifolia	FACU	Native
Asclepias incarnata	FACW	Native
Bromus ciliatus	FAC	Native
Bromus inermis	UPL	Introduced (invasive)
Carex atherodes	OBL	Native
Cirsium arvense	FACU	Introduced (invasive)
Epilobium ciliatum	FACW	Native
Helianthus grosseserratus	FACW	Native
Phalaris arundinacea	FACW	Introduced (naturalized)
Poa pratensis	FACU	Introduced (invasive)
Rumex crispus	FAC	Introduced (naturalized)
Solidago gigantea	FAC	Native
Spartina pectinata	FACW	Native
Symphyotrichum lanceolatum	FACW	Native
Toxicodendron radicans	FACU	Native
Typha sp.	OBL	Native
Shrubs:		
Rhamnus cathartica	FACU	Introduced (invasive)
Salix discolor	FACW	Native
Salix petiolaris	OBL	Native
Cornus alba	FACW	Native

Mapped Soil Unit – I27A Hamre muck

	Matrix		Redox Features				
Depth	Color (moist)	%	Color (moist)	%	Туре	Location	Texture
(inches)							
0-12	10YR 2/1	100					CL
12-16	2.5Y 5/2	85	2.5Y 4/6	15	С	М	С

Species	Indicator Status	Native/Non-native
Herbs:		
Carex atherodes	OBL	Native
Cirsium arvense	FACU	Introduced (invasive)
Cycloloma atriplicifolium	FACU	Native
Fragaria virginiana (vesca)	FACU (UPL)	Native
Helianthus grosseserratus	FACW	Native
Lycopus americanus	OBL	Native
Persicaria amphibia	OBL	Native
Phalaris arundinacea	FACW	Introduced (naturalized)
Poa pratensis	FACU	Introduced (invasive)
Rumex crispus	FAC	Introduced (naturalized)
Solidago gigantea	FAC	Native
Sonchus arvensis	FAC	Introduced (naturalized)
Spartina pectinata	FACW	Native
Symphyotrichum ericoides	FACU	Native
Symphyotrichum laeve	FACU	Native
Toxicodendron radicans	FACU	Native
Trees:		
Populus tremuloides	FAC	Native
Shrubs:		
Cornus alba	FACW	Native
Salix discolor	FACW	Native
Salix petiolaris	OBL	Native
Vines:		
Smilax lasioneura	UPL	Native

Mapped Soil Unit – I27A Hamre muck

	Matri	х		Redox Fe	atures		
Depth	Color (moist)	%	Color (moist)	%	Туре	Location	Texture
(inches)							
0-3	10YR 2/1	100					CL
3-17	2.5Y 6/2	95	10YR 5/6	5	С	М	CL

Species	Indicator Status	Native/Non-native
Herbs:		
Ambrosia artemisiifolia	FACU	Native
Asclepias syriaca	UPL	Native
Cirsium arvense	FACU	Introduced (invasive)
Cycloloma atriplicifolium	FACU	Native
Eleocharis sp.	OBL	Native
Elymus repens	FACU	Introduced (invasive)
Melilotus officinalis	FACU	Introduced (invasive)
Phalaris arundinacea	FACW	Introduced (naturalized)
Poa pratensis	FACU	Introduced (invasive)
Setaria pumila	FACU	Introduced (naturalized)
Solidago canadensis	FACU	Native
Spartina pectinata	FACW	Native
Symphyotrichum laeve	FACU	Native
Typha sp.	OBL	Native
Shrubs:		
Salix interior	FACW	Native
Salix discolor	FACW	Native
Cornus alba	FACW	Native

Mapped Soil Unit – I53A Roliss loam

	Matri	х		Redox Fe	atures		
Depth	Color (moist)	%	Color (moist)	%	Туре	Location	Texture
(inches)							
0-3	10YR 2/1	100					CL
3-15	2.5Y 6/2	90	10YR 5/6	10	С	М	CL

Species	Indicator Status	Native/Non-native			
Herbs:					
Ambrosia artemisiifolia	FACU	Native			
Beckmannia syzigachne	OBL	Native			
Cirsium arvense	FACU	Introduced (invasive)			
Epilobium ciliatum	FACW	Native			
Poa compressa	FACU	Introduced (invasive)			
Rumex crispus	FAC	Introduced (naturalized)			
Typha sp.	OBL	Native			
Urtica dioica	FAC	Native			
Shrubs:					
Salix sp.					

Mapped Soil Unit – I53A Roliss loam

Soils – difficult to sample – rocks and boulders.

Species	Indicator Status	Native/Non-native
Herbs:		
Asclepias syriaca	UPL	Native
Bromus ciliatus	FAC	Native
Cirsium arvense	FACU	Introduced (invasive)
Epilobium ciliatum	FACW	Native
Phalaris arundinacea	FACW	Introduced (naturalized)
Rumex crispus	FAC	Introduced (naturalized)
Setaria pumila	FACU	Introduced (naturalized)
Solidago gigantea	FAC	Native
Sonchus arvensis	FAC	Introduced (naturalized)
Spartina pectinata	FACW	Native
Typha sp.	OBL	Native
Urtica dioica	FAC	Native
Shrubs:		
Salix interior	FACW	Native
Symphoricarpos albus	UPL	Native

Mapped Soil Unit – I53A Roliss loam

	Matrix		Redox Features				
Depth	Color (moist)	%	Color (moist)	%	Туре	Location	Texture
(inches)							
0-8	10YR 2/1	100					CL
8-15	2.5Y 5/2	90	2.5Y 5/6	10	С	М	CL

Species	Indicator Status	Native/Non-native
Herbs:	•	·
Alisma gramineum (subcordatum)	OBL	Native
Ambrosia artemisiifolia	FACU	Native
Apocynum cannabinum	FAC	Native
Asclepias incarnata	FACW	Native
Asclepias syriaca	UPL	Native
Beckmannia syzigachne	OBL	Native
Bromus ciliatus	FAC	Native
Carex atherodes	OBL	Native
Cirsium arvense	FACU	Introduced (invasive)
Echinochloa crus-gali	FAC	Introduced
Epilobium ciliatum	FACW	Native
Geum canadense	FAC	Native
Helianthus grosseserratus	FACW	Native
Phalaris arundinacea	FACW	Introduced (naturalized)
Poa pratensis	FACU	Introduced (invasive)
Rosa arkansana	FACU	Native
Rumex crispus	FAC	Introduced (naturalized)
Schoenoplectus fluviatilis	OBL	Native
Scirpus atrovirens	OBL	Native
Solidago canadensis	FACU	Native
Solidago gigantea	FAC	Native
Spartina pectinata	FACW	Native
Symphyotrichum ericoides	FACU	Native
Symphyotrichum lanceolatum	FACW	Native
Tridens flavus	UPL	Native
Typha sp.	OBL	Native
Shrubs:		
Cornus alba	FACW	Native
Populus tremuloides	FAC	Native
Salix petiolaris	OBL	Native

Mapped Soil Unit – I53A Roliss loam

	Matri	х		Redox Fe	atures		
Depth	Color (moist)	%	Color (moist)	%	Туре	Location	Texture
(inches)							
0-9	10YR 2/1	100					CL
9-16	2.5Y 5/2	90	10YR 5/6	10	С	М	CL

Species	Indicator Status	Native/Non-native
Herbs:	·	· · · · · · · · · · · · · · · · · · ·
Apocynum cannabinum	FAC	Native
Asclepias incarnata	FACW	Native
Bromus inermis	UPL	Introduced (Invasive)
Chamaecrista faciculata	FACU	Native
Helianthus grosseserratus	FACW	Native
Panicum virgatum	FAC	Native
Phalaris arundinacea	FACW	Introduced (naturalized)
Poa pratensis	FACU	Introduced (Invasive)
Pycnanthemum virginianum	FAC	Native
Rosa arkansana		Native
Rumex crispus	FAC	Introduced (naturalized)
Solidago gigantea	FAC	Native
Sonchus arvensis	FAC	Introduced (naturalized)
Spartina pectinata	FACW	Native
Symphyotrichum ericoides	FACU	Native
Symphyotrichum laeve	FACU	Native
Toxicodendron radicans	FACU	Native
Urtica dioica	FAC	Native
Viburnum opulus	FAC	Native (introduced)
Shrubs:		
Alnus incannata	FACW	Native
Cornus alternifolia	FACU	Native
Cornus alba	FACW	Native
Crataegus chrysocarpa		Native
Lonicera dioica	FACU	Native
Prunus americana	UPL	Native
Rhamnus cathartica	UPL	Introduced (invasive)
Salix discolor	FACW	Native
Salix petiolaris	OBL	Native
Populus tremuloides	FAC	Native
Trees:		
Ulmus americana	FAC	Native

Mapped Soil Unit – I27A Hamre muck

	Matrix		Redox Features				
Depth	Color (moist)	%	Color (moist)	%	Туре	Location	Texture
(inches)							
0-1	10YR 2/1	100					CL
1-12	2.5Y 7/2	80	2.5Y 5/6	20	С	М	С

APPENDIX E

Aquatic Resource Delineation Report (Diversion Ditches)

AQUATIC RESOURCE **DELINEATION REPORT**

Black River Diversion Ditches, Pennington County, MN

Prepared for: **Red Lake Watershed District 1000 Pennington Ave S** Thief River Falls, MN 56701

I hereby certify that this report was prepared by me or under my direct supervision.

phase

Mark D. Aanenson Houston Engineering Inc. CWD Certification No. 1001

Date: September 29, 2017 HEI project no. 3655-091

HoustonEngineering Inc.

EXECUTIVE SUMMARY

Staff from Houston Engineering, Inc. (Houston Engineering) completed the components of a field investigation of the subject area to identify and delineate aquatic resources for a project on behalf of the Red Lake Watershed District. The subject property is located in Townships 153N and 152N near St. Hilaire, in Pennington County, Minnesota. The delineation was conducted in accordance with the 1987 Corps of Engineers Wetland Delineation Manual, and the Great Plains Regional Supplement (2010). Results of the field delineations indicate there are 17 wetland areas (total 23.16 acres) located in the 2216.08 acre survey area. The wetlands are either road ditch wetlands or natural depressions. Some of the wetlands are classified by the National Wetlands Inventory (NWI) as PEM1C (palustrine, emergent, persistent, seasonally flooded) or R5UBFx (riverine, unconsolidated bottom, semi-permanently flooded, excavated) (Cowardin et al. 1979). The general condition of the aquatic resources is fair.

1 INTRODUCTION

Staff from Houston Engineering, Inc. (Houston Engineering) completed a field investigation in accordance with the 1987 Army Corps of Engineers Wetland Delineation Manual, and the Great Plains Regional Supplement. The proposed construction includes construction of an impoundment with diversion ditches. The purpose of this report is to identify the wetlands and water resources that could be impacted by the project.

2 LOCATION

The project is located in Townships 153N and 152N near the town of St. Hilaire in Pennington County, Minnesota (general latitude: 48.030481, longitude: -96.376425, **Appendix A: Location Map**). All of the project boundaries are along roads. The project is 7.8 miles west of St. Hilaire, MN (driving directions: from St. Hilaire, head south on Broadway Avenue toward Ash St. (110th St SW); turn right onto Ash/110th St SW; continue on Ash/110th St SW for 4.7 miles where the southern stretch of the project area begins). The project corridor consists of four lengths along 110th St SW (3.67 miles), Center St W (1.38 miles), 160th Ave NW (2.43 miles), and 150th Ave NW (3.94 miles) (**Appendix B: Wetland Maps with NWI**).

3 METHODS

For the delineation, we followed the methods described in the 1987 Manual for "routine" delineations. Additionally, we followed methodology specific to the Great Plains Regional Supplement (2010). Prior to the field delineation to identify potential wetland habitats and provide guidance for the investigation of wetlands at the project site, we reviewed the U.S. Fish and Wildlife Service NWI, and the county digital soil surveys (USDA-NRCS), as well as current and historical aerial photography. The following procedures were used to determine wetland habitats:

- We surveyed vegetation to determine the proportion of the dominant plant species classified as either obligate wetland, facultative wetland, or facultative plants; or if other indicators of wetland vegetation were present.
- We sampled the soil using a soil probe to identify soil morphology, redoximorphic features and soil texture. We determined the hydric soil indicators according to Field Indicators of Hydric Soils in the United States; Guide for Identifying and Delineating Hydric Soils, Version 7.0 (USDA-NRCS, 2010).
- We determined wetland hydrology on-site by observation of primary and secondary hydrologic indicators (US Army Corps of Engineers, 2010). The wetland hydrology determination uses the criteria of the presence of water within 12 inches of the surface for 14 days during the growing season, or within 24 inches of the surface during the dry part of the growing season. We also used aerial photography to assist hydrologic assessment.

Staff from Houston Engineering (Donna Jacob and Mark D. Aanenson) performed fieldwork on August 23rd and 24th, 2017. We marked the wetland boundaries and sample locations using a Trimble Geo 7X handheld GPS unit with centimeter accuracy for those representative plant communities present along the wetland boundaries. Sample points included observations of dominant vegetation, soil profiling including color and texture, and indications of hydrology. We also used additional, undocumented sample points throughout the delineation to verify vegetation, hydric soils, and hydrology. We recorded our observations using data forms and geolocated photographs.

4 EXISTING CONDITIONS

Landscape Setting:

The project area is located in the Lake Agassiz ecological province, Aspen Parklands subsection (AP). The AP subsection consists of level to gently rolling topography, as it was formed in the basin of Glacial Lake Agassiz. The soil features of this area are characteristic of glacial lake deposits including sandy, loamy, and clay/silt deposits. This area of the AP subsection drains to the southeast to the Black River, which flows south (**Appendix C: LiDAR Maps**). Pre-settlement vegetation had been highly influenced by variations in the water table and by natural burning events, which created a complex mosaic of ecological communities. The project is located in the southern half of the subsection where agriculture dominates the present land use (MN DNR 1999).

Climatic Conditions:

The weather conditions at the time of the delineation were good. The climatic conditions in the area were drier than normal because of decreased precipitation in the months before (Fig. 1 Antecedent Precipitation, MN State Climatology Office, 2016).

Figure 1: Antecedent precipitation

values are in inches A 'R' following a monthly total indicates a provisional value derived from radar-based estimates.	first prior month: July 2017	second prior month: June 2017	third prior month: May 2017
estimated precipitation total for this location:	1.07R	4.26R	2.09R
there is a 30% chance this location will have less than:	2.26	2.86	1.81
there is a 30% chance this location will have more than:	4.82	5.28	3.69
type of month: dry normal wet	dry	normal	normal
monthly score	3 * <mark>1</mark> = 3	2 * 2 = 4	1 * 2 = 2
multi-month score: 6 to 9 (dry) 10 to 14 (normal) 15 to 18 (wet)		9 (Dry)	

Aquatic Resources: Results of the field wetland delineation indicate there are 17 wetland areas located within in the 2216.08 acre project area. Some of the wetlands are listed in the NWI (Table 1, Appendix B: Wetland Maps with NWI). Most of the wetlands were formed with the construction of the road ditches. These are mostly PEM1C wetlands (palustrine, emergent, persistent, seasonally flooded) (see Appendix D: Site Photographs).

Site descriptions:

Wetland 1: road ditch wetland not classified by the NWI.

Wetland 2: road ditch wetland not classified by the NWI.

<u>Wetland 3</u>: road ditch wetland not classified by the NWI. Wetland 3 connects to a field drain exiting the field to the east, and also connects with three natural depression areas that extend beyond the project boundary in an agricultural field to the east. These depressions are not classified by the NWI.

Wetland 4: road ditch wetland not classified by the NWI.

Wetland 5: natural depression classified by the NWI as PEM1C.

Wetland 6: road ditch wetland not classified by the NWI.

Wetland 7: road ditch wetland not classified by the NWI.

Wetland 8: road ditch wetland classified as R5UBFx by the NWI.

Wetland 9: road ditch wetland not classified by the NWI.

- <u>Wetland 10</u>: road ditch wetland not classified by the NWI. Wetland 10 extends into a depression in an agricultural field to the east.
- Wetland 11: road ditch wetland not classified by the NWI.
- Wetland 12: road ditch wetland not classified by the NWI.
- Wetland 13: road ditch wetland not classified by the NWI.
- Wetland 14: road ditch wetland not classified by the NWI.
- <u>Wetland 15</u>: road ditch wetland not classified by the NWI. Wetland 15 connects with a natural depression that is classified as PEM1Cd by the NWI.
- <u>Wetland 16</u>: road ditch wetland not classified by the NWI. Wetland 16 connects with a field drain from the agricultural field to the north, and with a natural wetland that is classified as PEM1B/SS1Ad.

Wetland 17: road ditch wetland not classified by the NWI.

			Wetland type				
Wetland Number	NWI Listing	Cowardin et al. 1979	Circular 39 (Shaw and Fredine 1959)	Eggers and Reed (2015)	Wetland area (acres)	Latitude (center)	Longitude (center)
1	Upland	PEM1Cd	Туре З	Shallow Marsh	0.25	48.076838	-96.370874
2	Upland	PEM1Cd	Туре 3	Shallow Marsh	1.77	48.069628	-96.371098
3	Upland	PEM1Cd	Туре 3	Shallow Marsh	8.48	48.052157	-96.371018
4	Upland	PEM1Cd	Туре З	Shallow Marsh	0.33	48.048128	-96.392845
5	PEMC	PEM1Cd	Туре З	Shallow Marsh	0.32	48.039930	-96.370992
6	Upland	PEM1Cd	Туре 3	Shallow Marsh	0.03	48.035974	-96.392791
7	Upland	PEM1Cd	Туре З	Shallow Marsh	0.06	48.034341	-96.393006
8	R5UBFx	PEM1Cd	Туре З	Shallow Marsh	3.43	48.006917	-96.430458
9	Upland	PEM1Cd	Туре 3	Shallow Marsh	0.51	48.031987	-96.370545
10	Upland	PEM1Cd	Туре 3	Shallow Marsh	0.22	48.030521	-96.370978
11	Upland	PEM1Cd	Туре З	Shallow Marsh	0.09	48.025175	-96.392919
12	Upland	PEM1Cd	Туре З	Shallow Marsh	0.08	48.021193	-96.387047
13	Upland	PEM1Cd	Туре 3	Shallow Marsh	0.01	48.006915	-96.363686
14	Upland	PEM1Cd	Туре З	Shallow Marsh	0.11	48.006925	-96.381892
15	PEM1Cd	PEM1Cd	Туре З	Shallow Marsh	0.72	48.006698	-96.326324
16	PEMB/SS1B	PEM1Cd/SS1B	Type2/6	Wet Meadow/ Shrub Swamp	6.45	48.006929	-96.358624
17	Upland	PEM1Cd	Туре З	Shallow Marsh	0.30	48.006930	-96.430427
	total acres within project boundary						

Table 1: Delineated Wetlands and their characteristics (data limited to project boundary only)

Hydrology description:

Most of the road ditch wetlands in this area receive runoff from the surrounding agricultural fields with drainage ditches, and some connect with natural depression wetlands. The project area drains to the southwest toward Black River.

Soil descriptions:

Dominant soils within the project site areas are well to excessively drained and are formed in till, coarsesilty glaciolacustrine deposits, and glaciolacustrine deposits over till. The project area is composed of a variety of soil types with slopes ranging between 0-30% (**Appendix E: Hydric Soil Maps**). The dominant soil include Roliss loam (hydric rating: 95%).

Vegetation descriptions:

Dominant species in the wetland areas within the project area (**Appendix F: Plant List** and **Appendix G: Data Forms**) represent tree, shrub, and herb strata. There is one wetland dominant tree species, *Acer negundo* (ash-leaf maple), and one wetland dominant shrub species, *Salix petiolaris* (meadow willow). A wide variety of wetland herbs are present with the more frequent species including *Agrostis stolonifera* (spreading bent), *Beckmannia syzigachne* (American slough-grass), *Equisetum palustre* (marsh horsetail), *Phalaris arundinacea* (reed-canary grass), and *Typha sp.* (cattail).

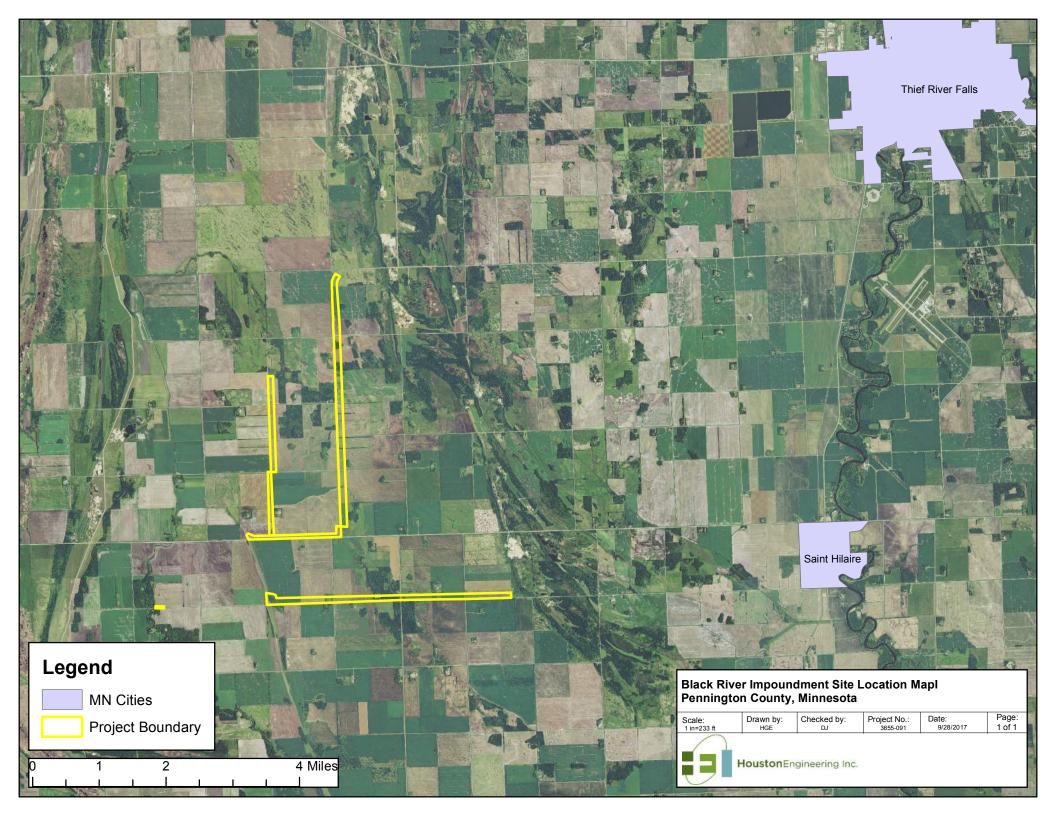
Commerce:

There are no evident commerce activities associated with this wetland.

5 REFERENCES

- Cowardin LM, Carter V, Golet FC, LaRoe ET (1979) Classification of wetlands and deepwater habitats of the United States. U. S. Department of the Interior, Fish and Wildlife Service, Washington, D.C. https://www.fws.gov/wetlands/Documents/Classification-of-Wetlands-and-Deepwater-Habitats-of-the-United-States.pdf
- Eggers SD, Reed DM (2015) Wetland Plants and Plant Communities of Minnesota and Wisconsin," Version 3.2, July 2015. US Army Corps of Engineers, 478 pp.
- Lichvar RW, Banks DL, Kirchner WN, Melvin NC (2016) The National Wetland Plant List: 2016 wetland ratings. Phytoneuron 2016-30: 1-17. 28 April 2016. ISSN 2153 733X
- MN DNR (1999) Minnesota Department of Natural Resources Ecological Classification System.

http://www.dnr.state.mn.us/ecs/index.html (Accessed October 2017).


MN State Climatology Office (2016) Antecedent Precipitation Worksheet.

http://climate.umn.edu/gridded_data/precip/wetland/wetland.asp (Accessed December 2016).

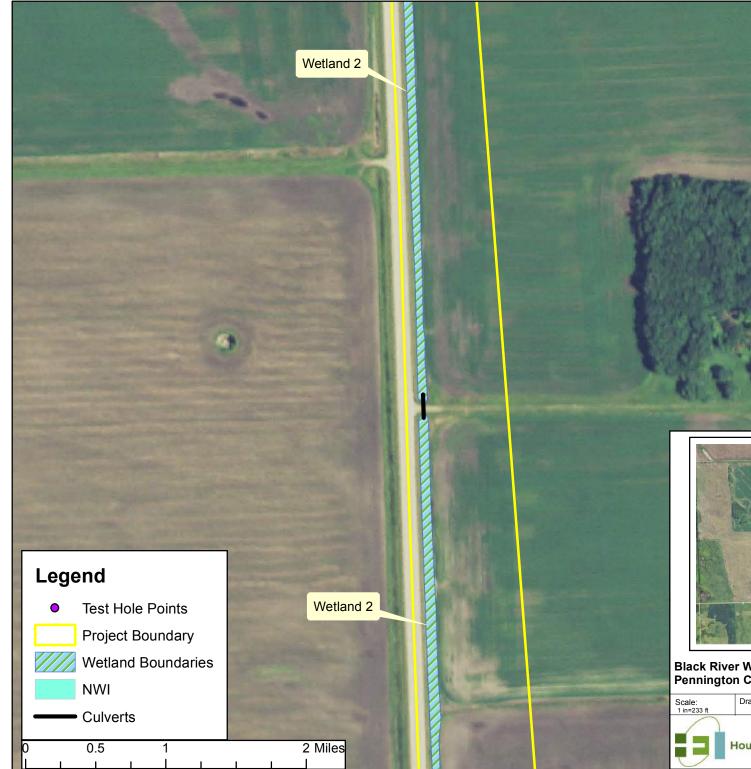
- Shaw SP, Fredine CG (1959) Wetlands of the United States. U.S. Fish Wildlife Service. Circular 39. 67 pp.
- USACE (1987) U.S. Army Corps of Engineers. Wetlands Delineation Manual. Wetlands Research Program. Technical Report Y-87-1. Department of the Army, Waterways Experiment Station, US Army Corps of Engineers. Vicksburg, Mississippi, USA.
- USACE (2010) U.S. Army Corps of Engineers. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Great Plains Region (Version 2.0), eds. Wakeley JS, Lichvar RW, Noble CV. ERDC/EL TR-10-1. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
- USDA-NRCS (2016) US Department of Agriculture-Natural Resource Conservations Service. Field Indicators of Hydric Soils in the United States – Guide for identifying and delineating Hydric Soils, Version. 8.0. eds. Vasilas LM, Hurt GW, Berkowitz JF. USDA – NRCS in cooperation with the National Technical Committee for Hydric Soils.
- USDA-NRCS (2017) US Department of Agriculture-Natural Resource Conservations Service. Soil Survey of Minnesota by County (Pennington County). http://websoilsurvey.nrcs.usda.gov/app/ (Accessed September 2017).
- USDA-NRCS (2017) US Department of Agriculture-Natural Resource Conservations Service. Official Soil Series Descriptions. https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2_053587 (Accessed September 2017).
- USFWS (2017) United States Fish and Wildlife Service. National Wetlands Inventory. http://www.fws.gov/wetlands/Data/Mapper.html (Accessed September 2017).

Appendix A

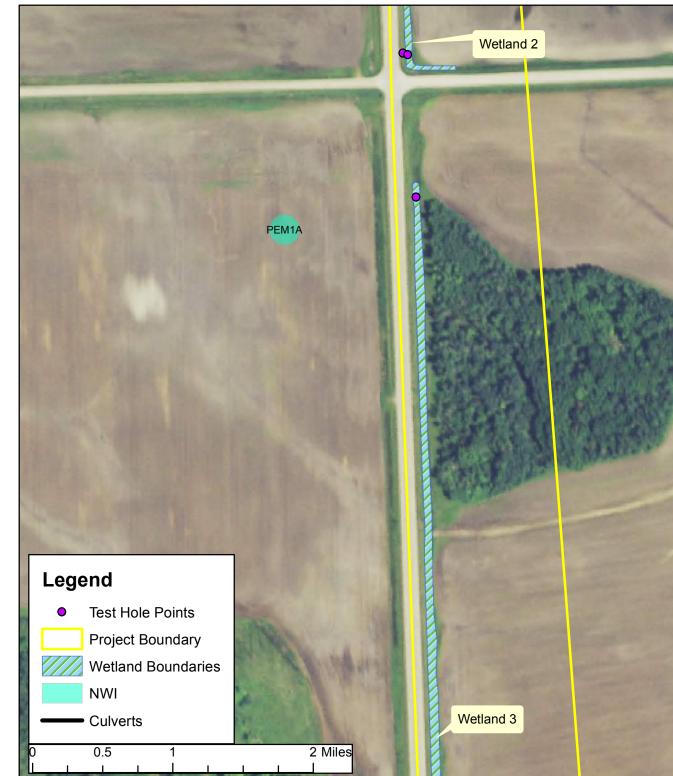
Location Map

Appendix B

Wetland Maps with NWI


with

Index Reference Map

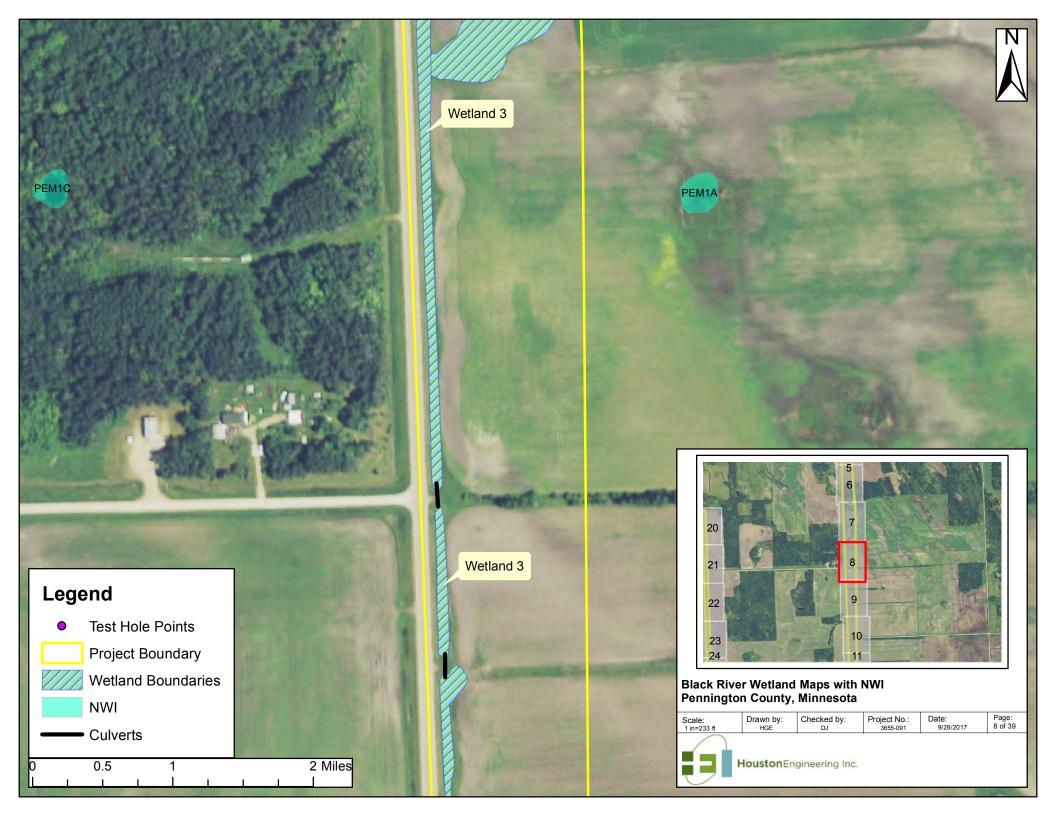


Black River Wetland Maps with NWI Pennington County, Minnesota

Scale:	Drawn by:	Checked by: Project No.:		Date:	Page:
1 in=233 ft	HGE	DJ 3655-091		9/28/2017	3 of 39
Ē	loustonEng	gineering Inc.			

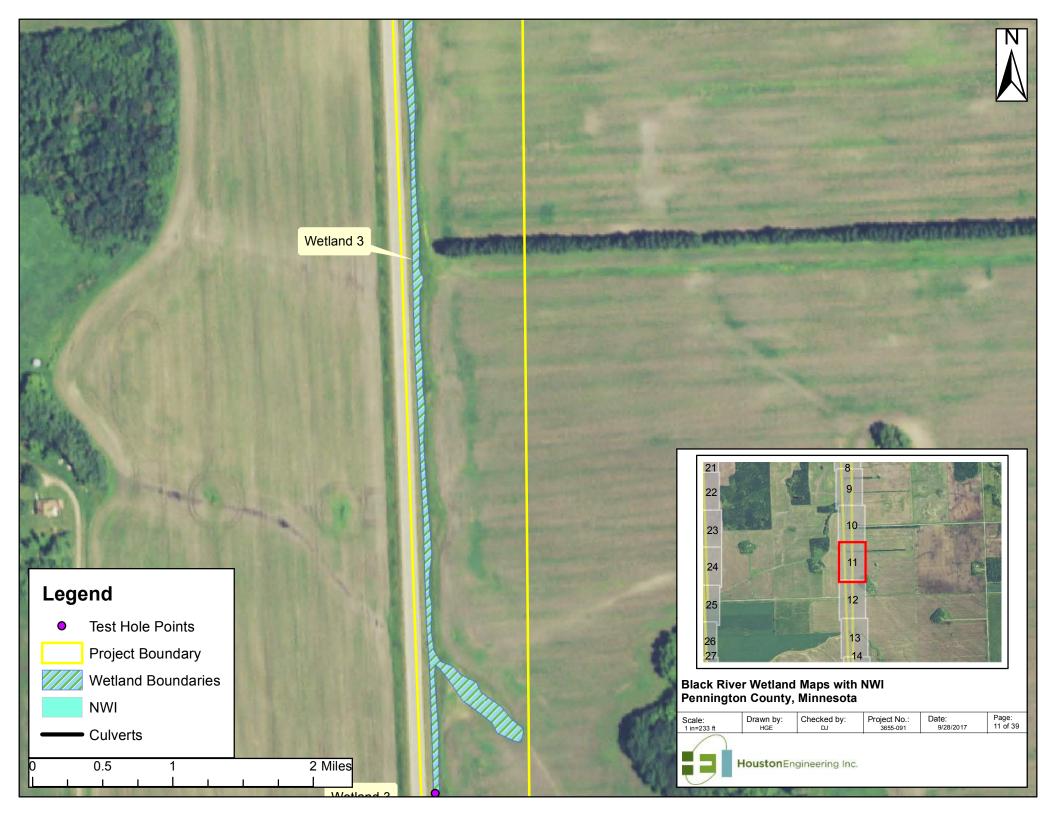
Black River Wetland Maps with NWI Pennington County, Minnesota

Scale:			Checked by: Project No.:		Page:
1 in=233 ft			DJ 3655-091		5 of 39
	loustonEng	gineering Inc.			

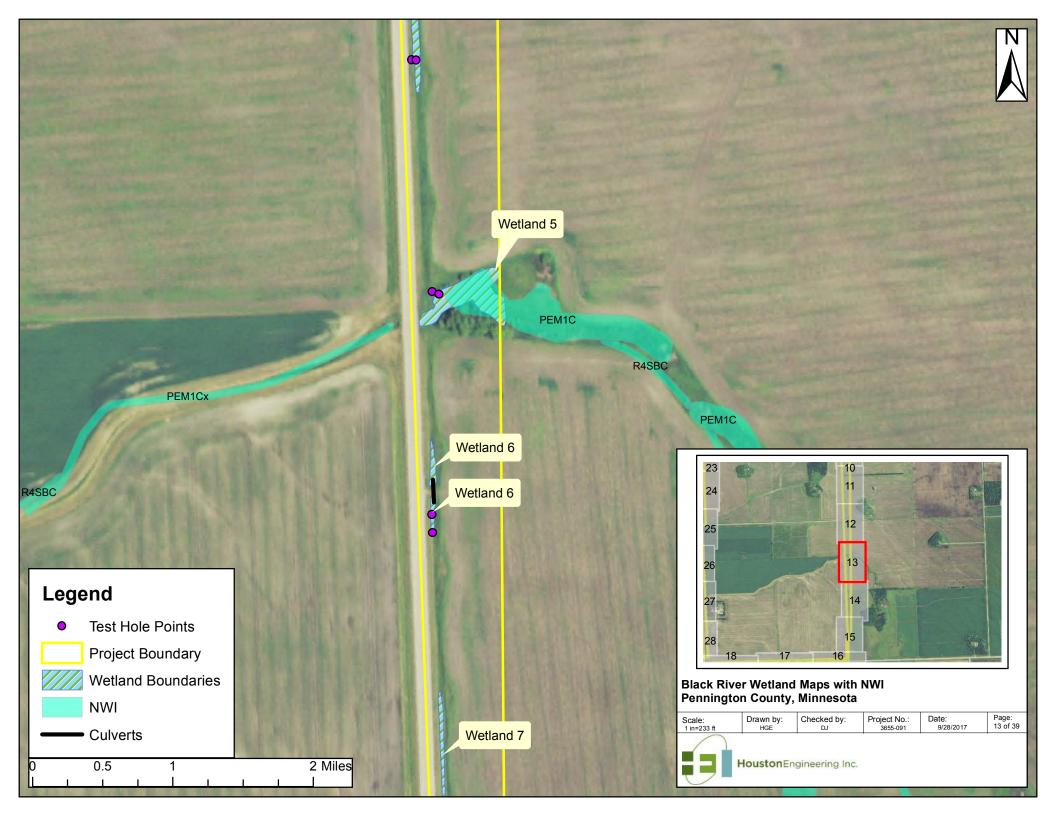

Wetland 3 Legend Test Hole Points 0 Project Boundary Wetland Boundaries NWI Culverts 0.5 2 Miles 1

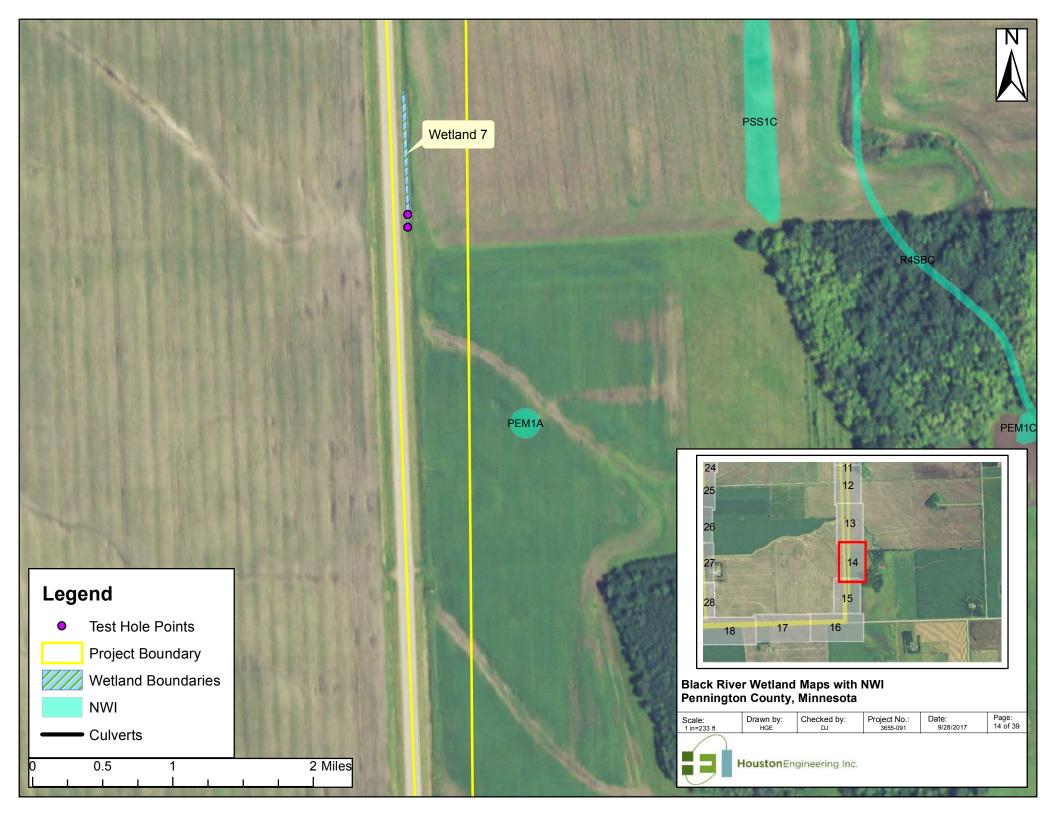


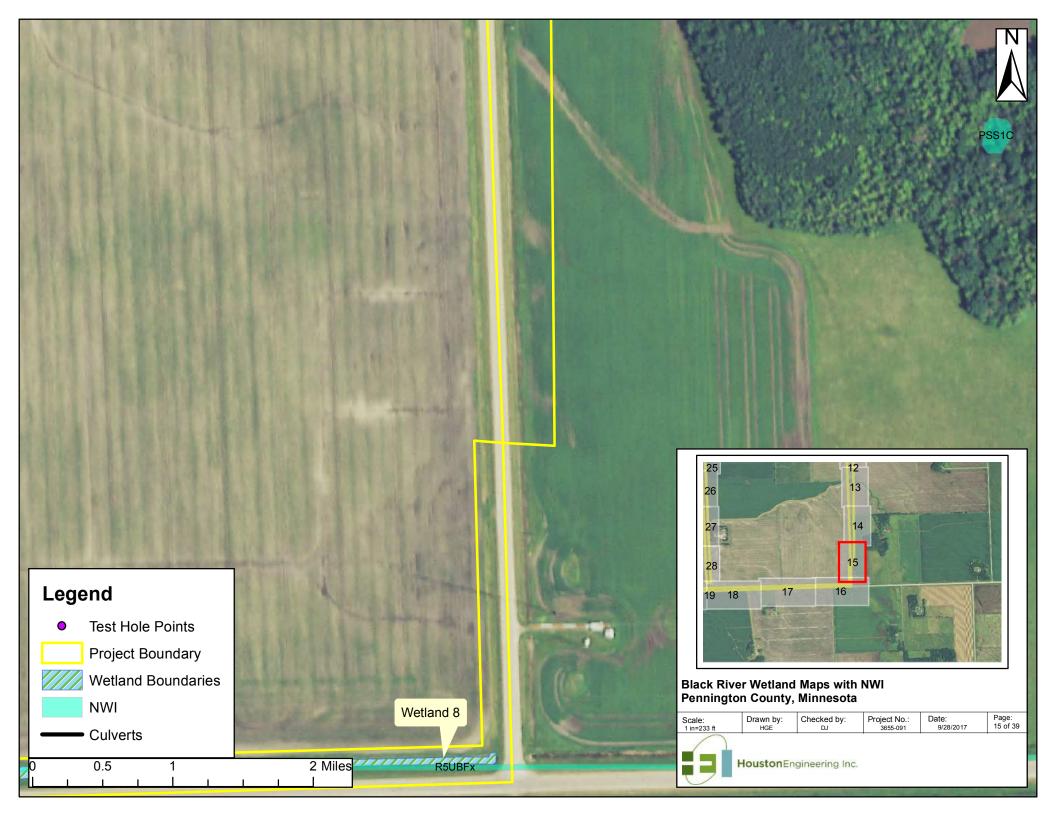
Scale:			Project No.:	Date:	Page:
1 in=233 ft			3655-091	9/28/2017	6 of 39
	louston Eng	gineering Inc.			

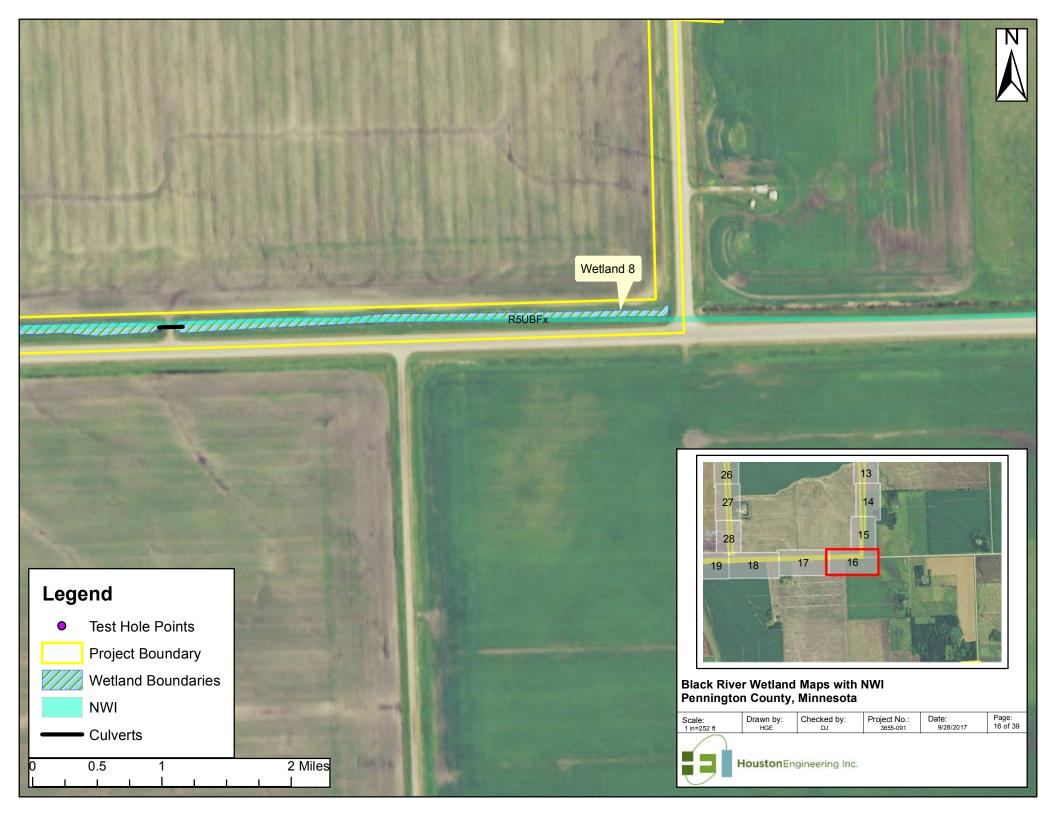


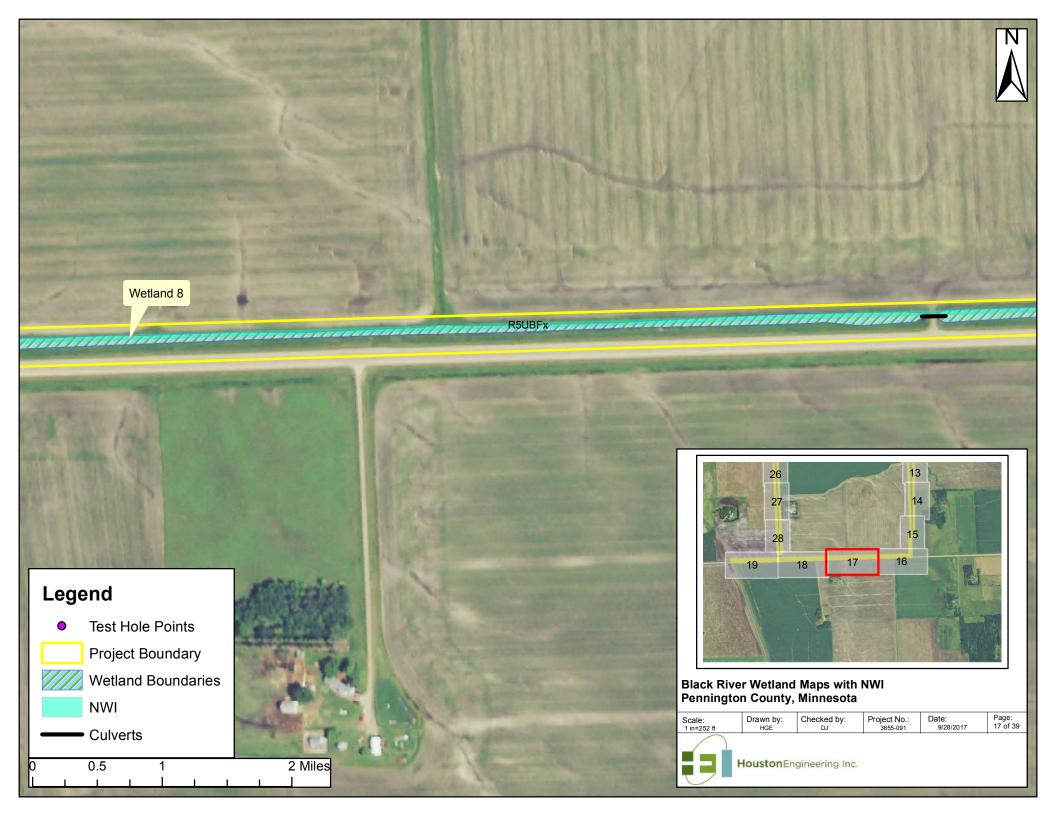


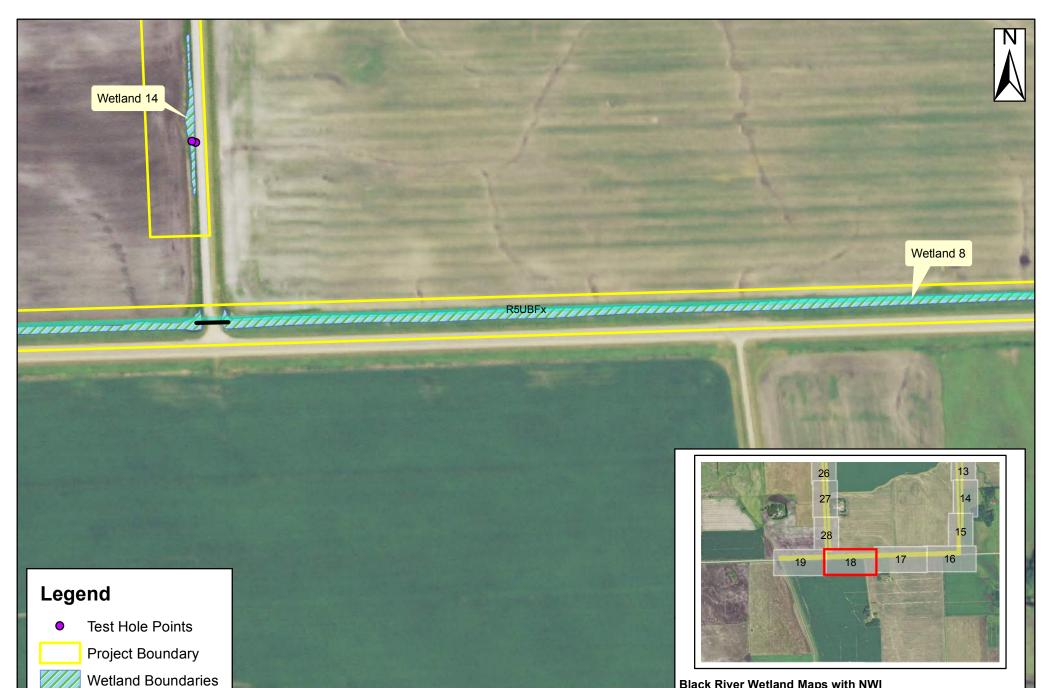






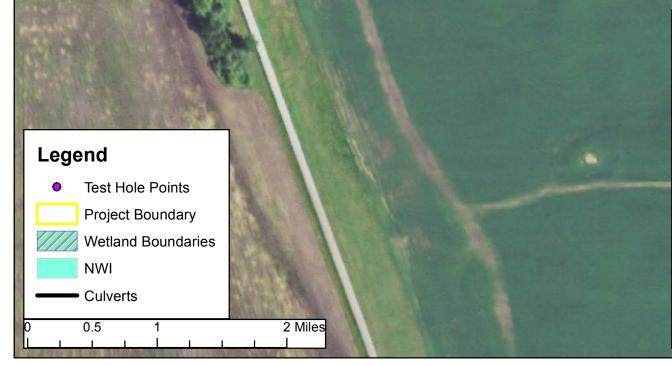


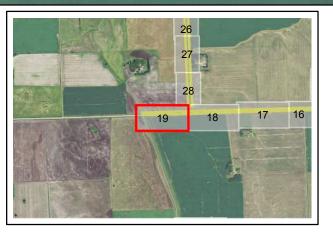




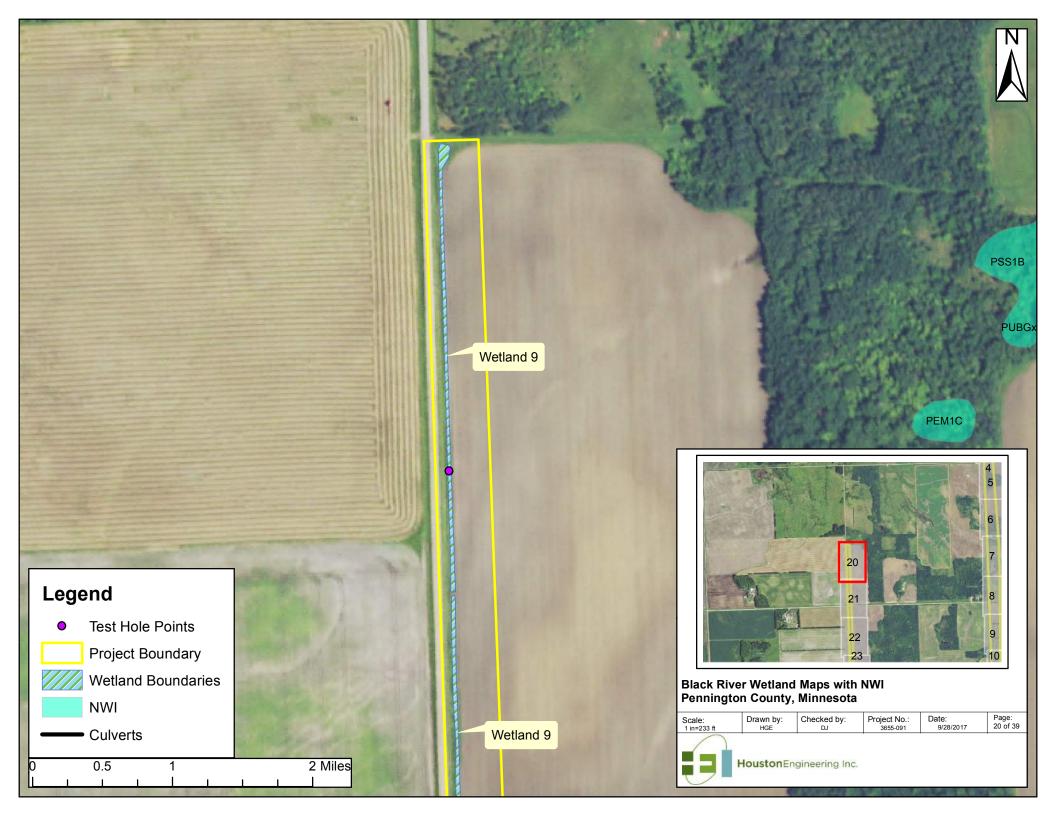
NWI

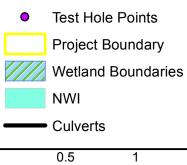
0.5

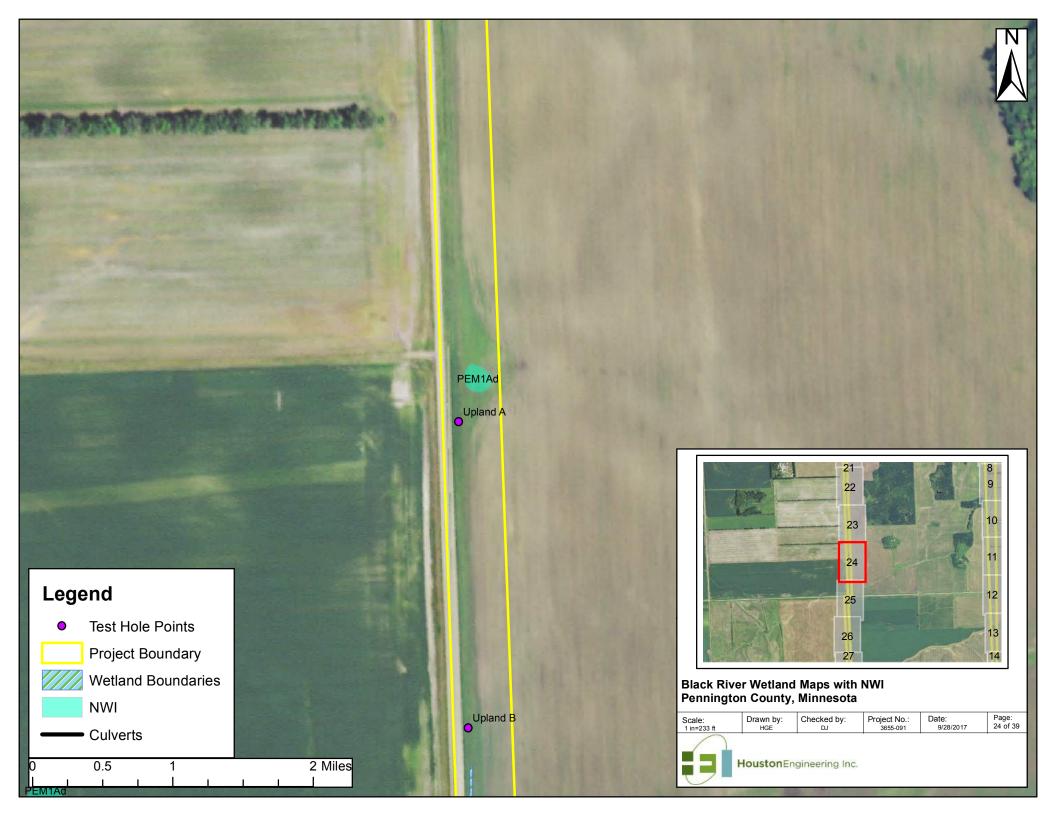

Culverts


1

2 Miles

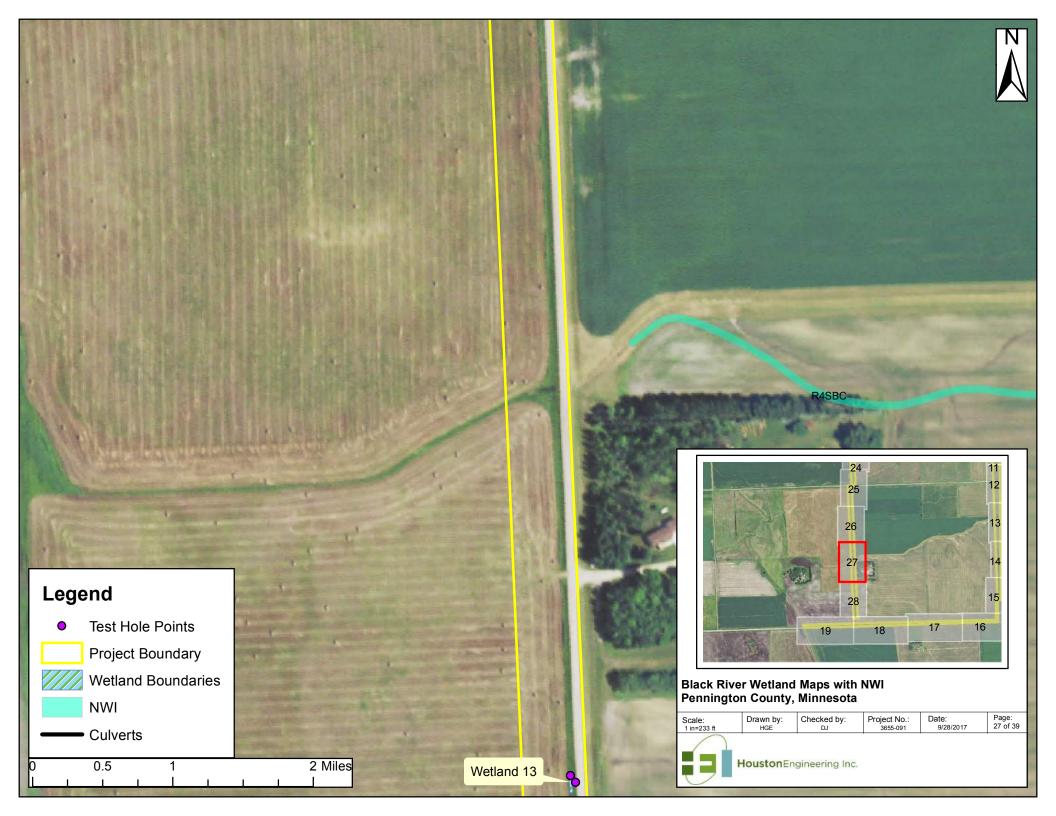

Scale:	Drawn by:	Checked by:	Project No.:	Date:	Page:
1 in=252 ft	HGE	DJ	3655-091	9/28/2017	18 of 39
	louston Eng				

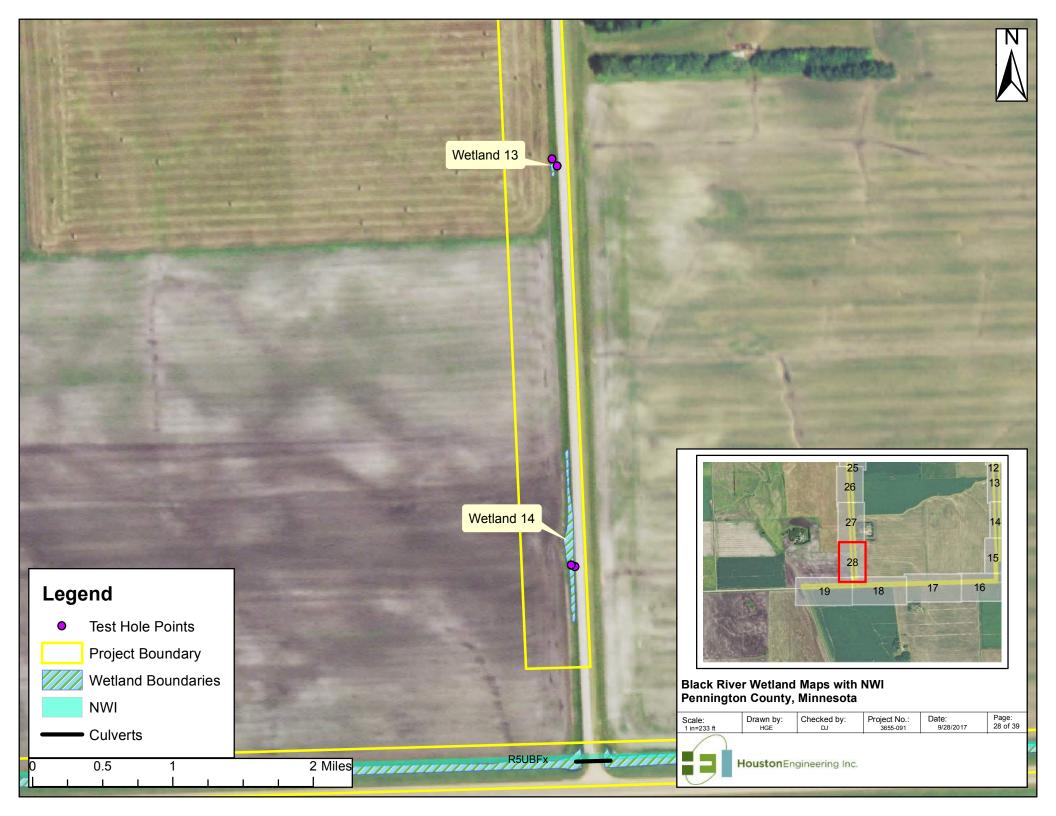

Scale: 1 in=252 ft							
Ē	1 in 252 ft HGE DJ HoustonEngineering Inc. HoustonEngineering Inc. HoustonEngineering Inc.						

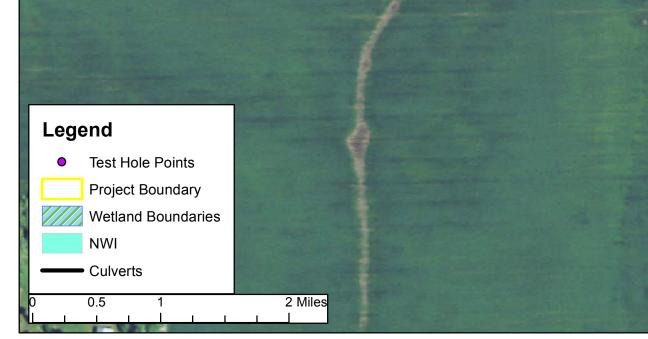




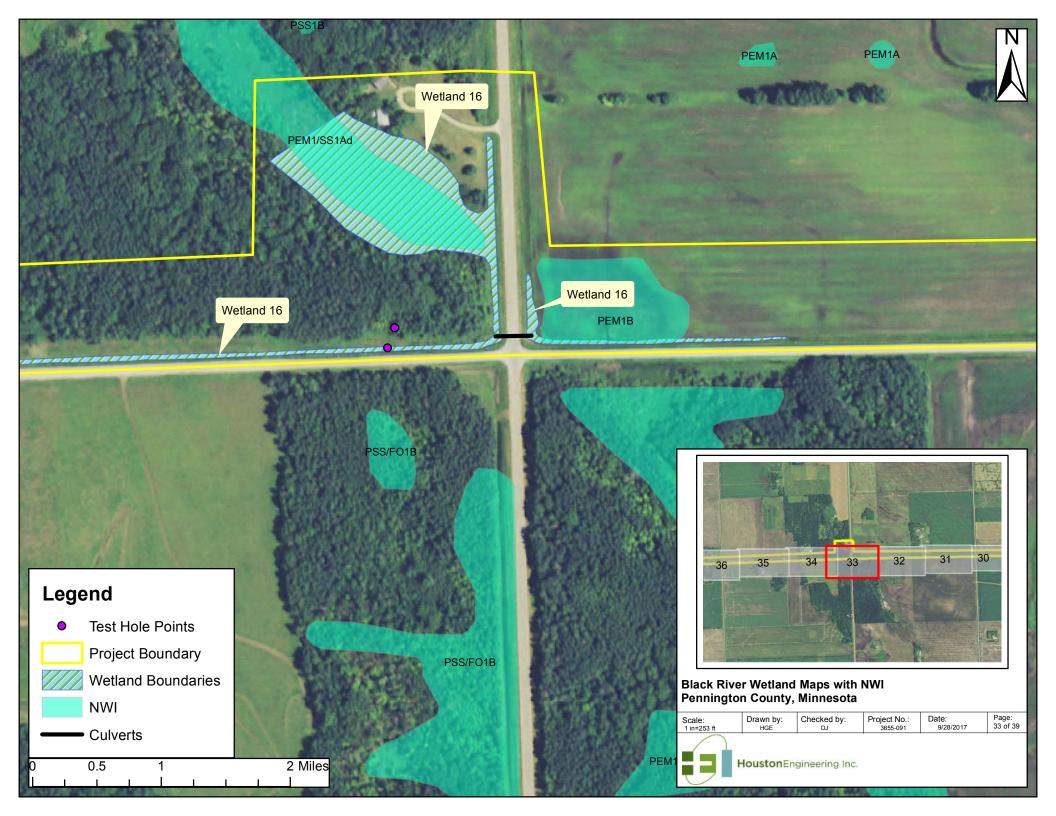
2 Miles

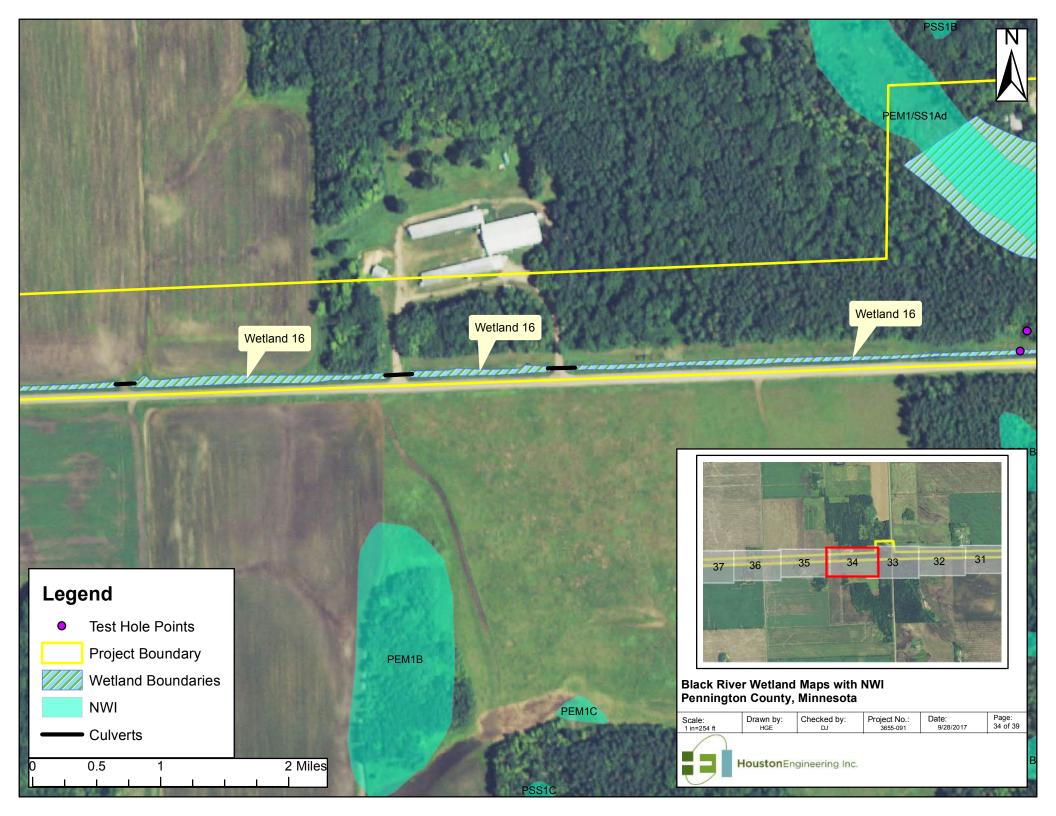


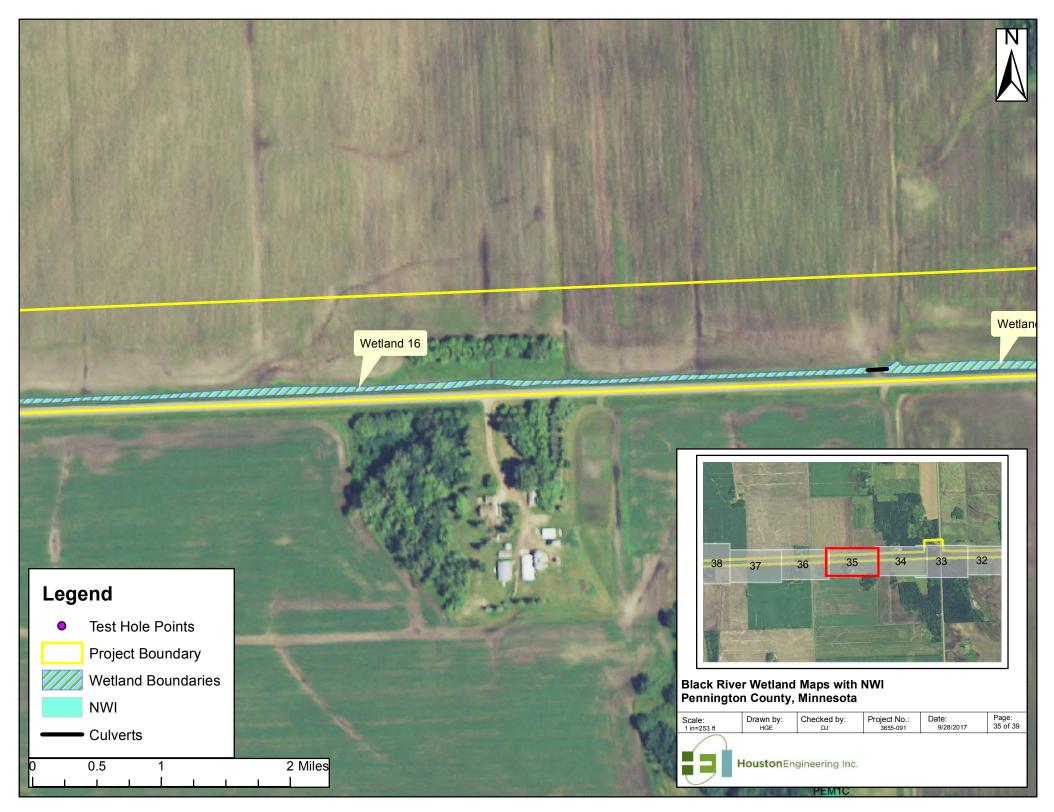

Scale: 1 in=233 ft						
	louston Eng	gineering Inc.				

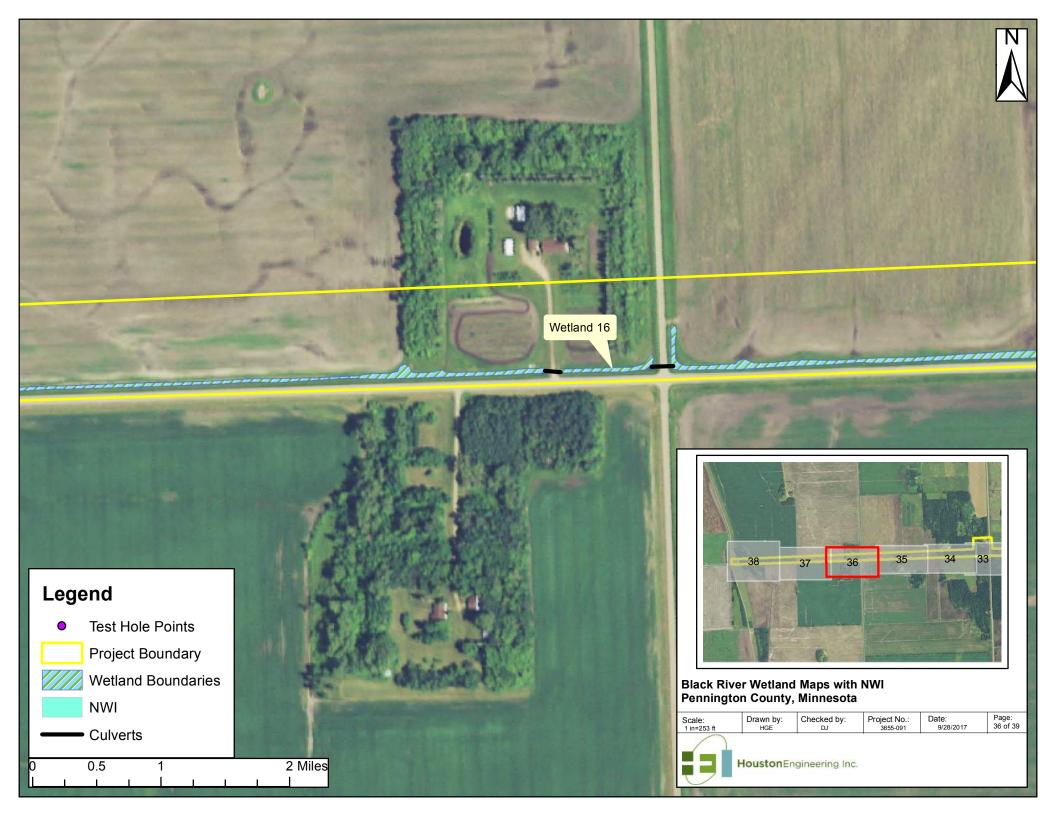


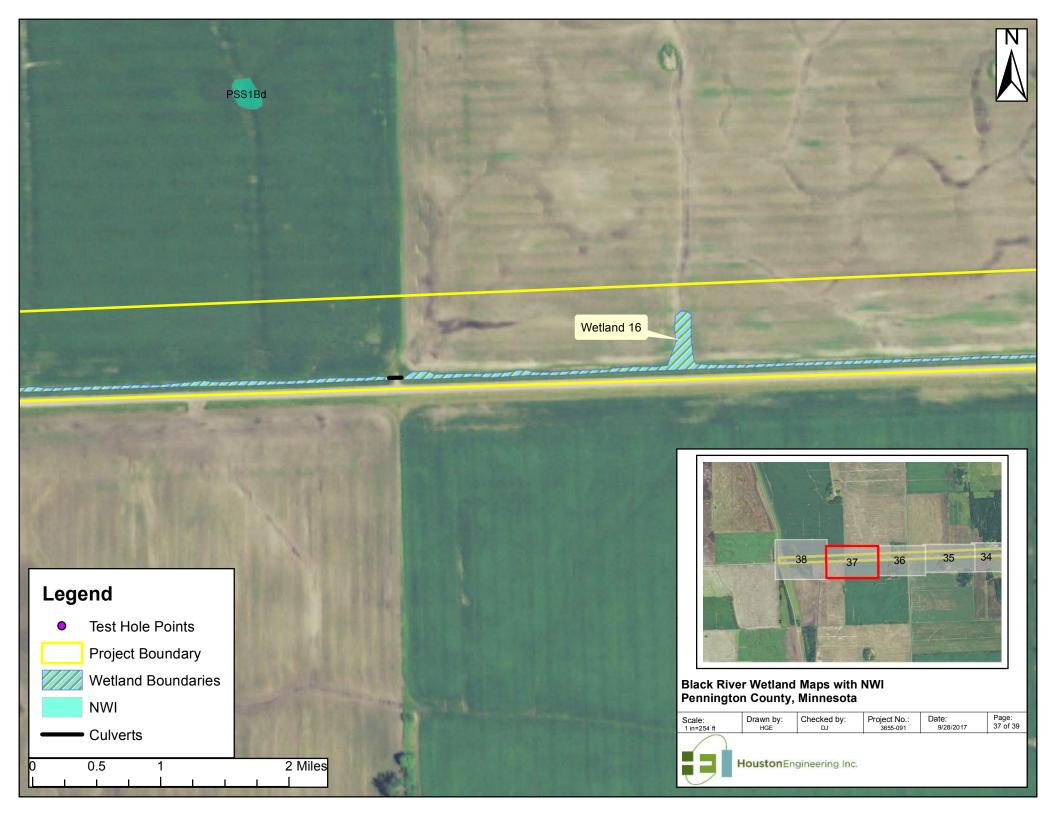


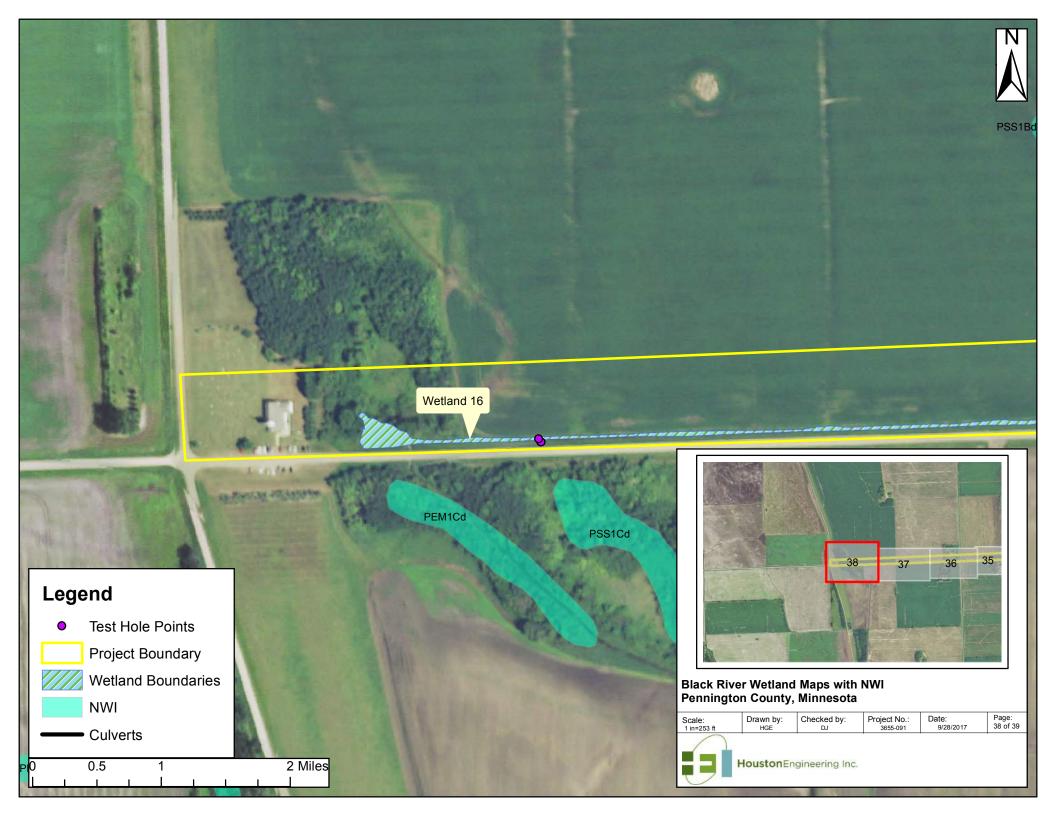


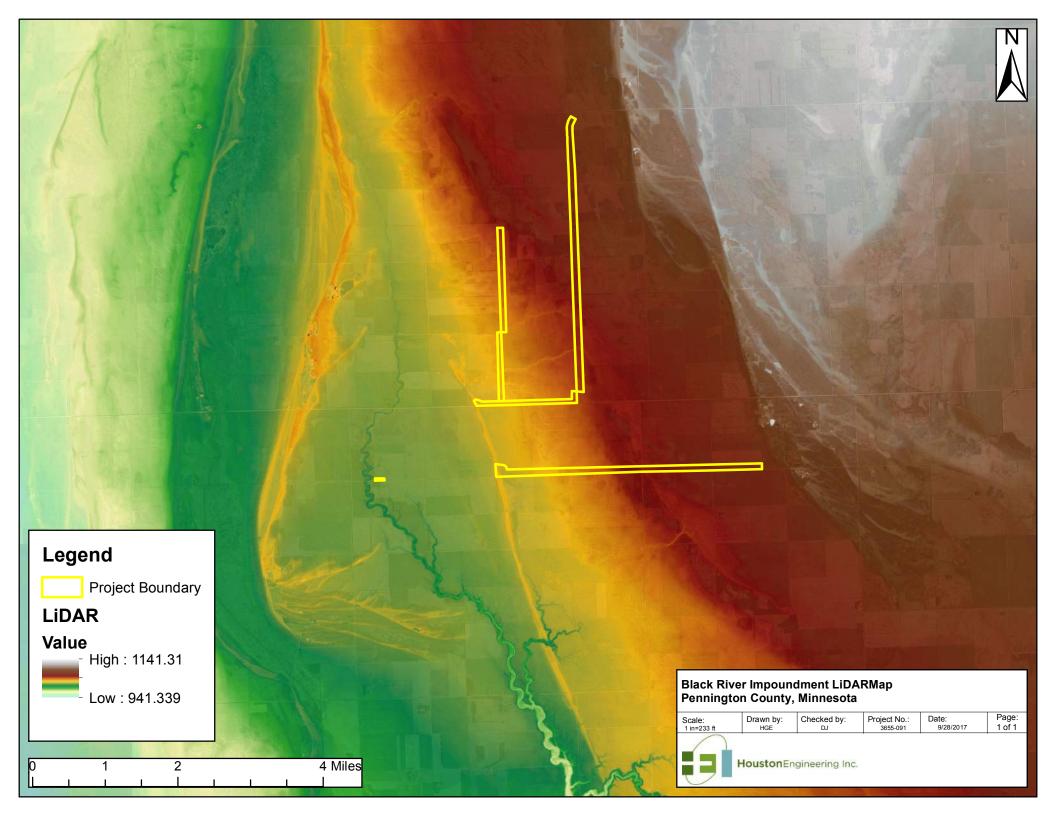

Scale:	Drawn by:	Checked by:	Project No.:	Date:	Page:
1 in=254 ft	HGE	DJ	3655-091	9/28/2017	29 of 39
Ē	loustonEng	gineering Inc.			











Prove Research Project Boundary Project Boundary Wetland Boundaries NWI Culverts	PF01A R4SBCx R4SBCx PF01A	Wetland 17	
Legend • Test Hole Points • Project Boundary Wetland Boundaries • NWI Scale: Drawn by: Checked by: Project No:: Date:: Page:: Project No:: Date:: Project No:: Page:: Page:: Project No:: Page:: Page:: Project No:: Page:: Page::<	PF01A R4SBCx		
	 Legend Test Hole Points Project Boundary Wetland Boundaries NWI 		Black River Wetland Maps with NWI Pennington County, Minnesota

Appendix C

LiDAR map

Appendix D

Site Photographs

Wetland 1, view W

Wetland 2, view SW

Wetland 3, view N

Wetland 3, view N

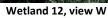
Wetland 4, view NE

Wetland 5, view NE

Wetland 6, view E

Wetland 8, view SW

Wetland 9, view S


Wetland 9, view W

Wetland 10, view NW

311.3

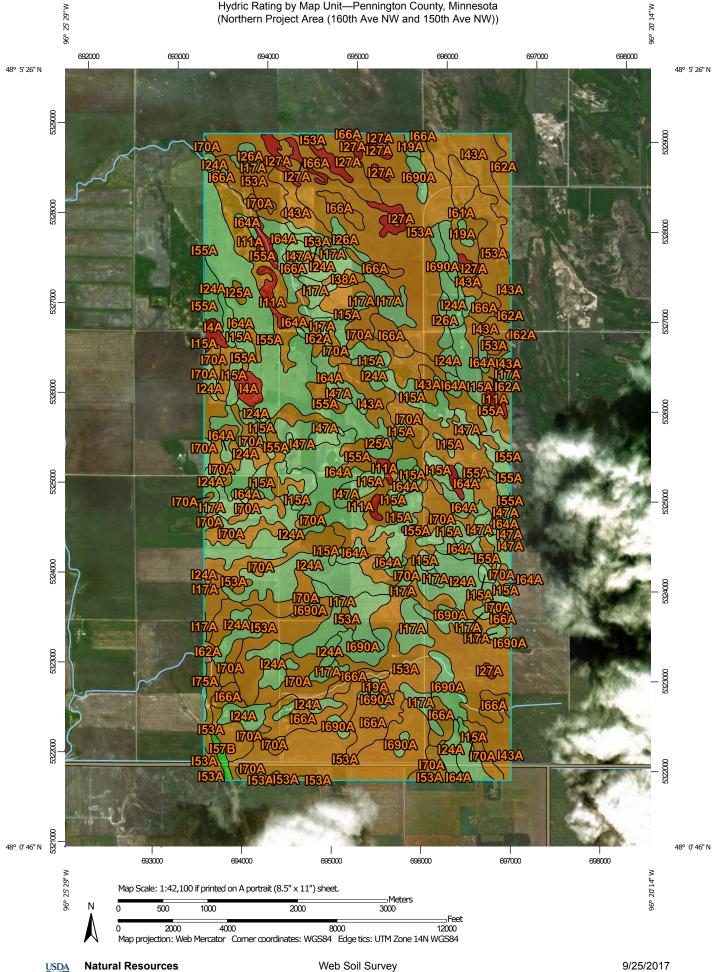
Wetland 11, view N

Wetland 13, view W

Wetland 14, view NW

Wetland 15, view S

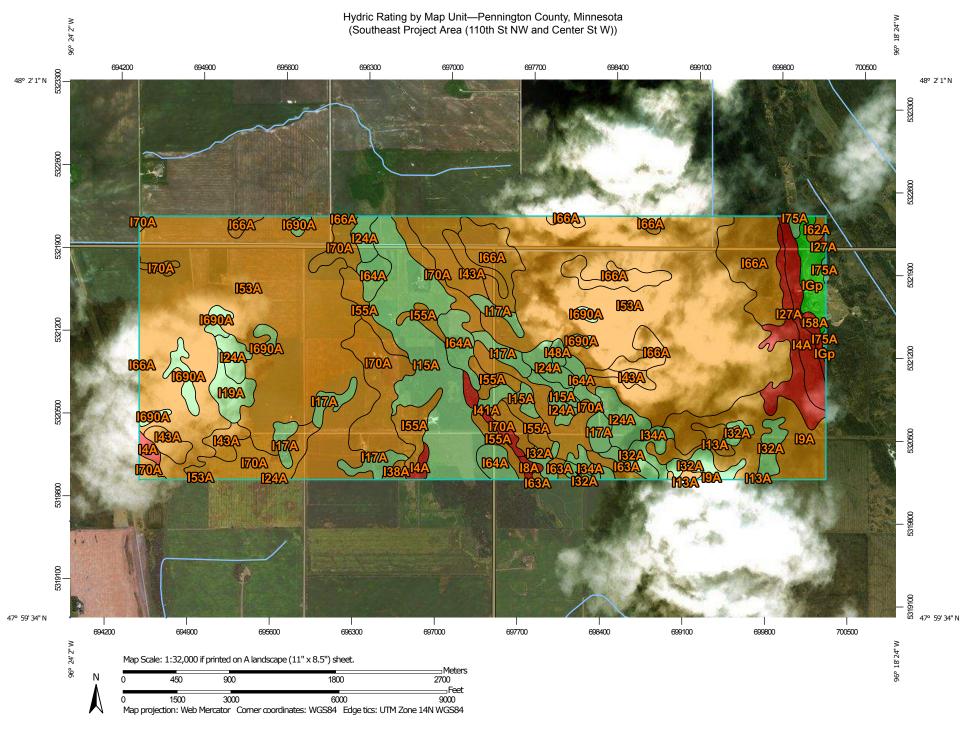
Wetland 16, view SE


Wetland 16, view S

Wetland 17, view NE

Appendix E

Hydric soil maps

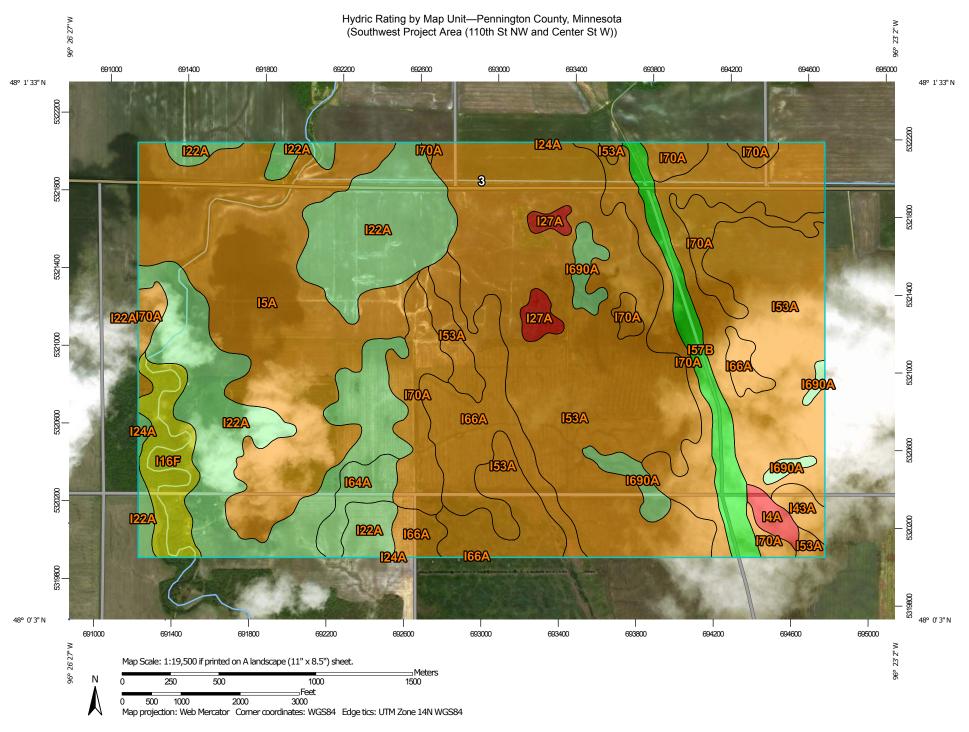

Hydric Rating by Map Unit—Pennington County, Minnesota (Northern Project Area (160th Ave NW and 150th Ave NW))

Hydric Rating by Map Unit

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
I4A	Berner, Rosewood, and Strathcona soils, seepy, 0 to 2 percent slopes	100	38.7	0.6%
I11A	Deerwood muck, 0 to 1 percent slopes	100	65.8	1.1%
I15A	Hecla loamy fine sand, 0 to 2 percent slopes	5	722.1	11.8%
I17A	Foldahl fine sandy loam, loamy till substratum, 0 to 3 percent slopes	16	302.7	4.9%
I19A	Foxhome sandy loam, 0 to 3 percent slopes	15	54.5	0.9%
I24A	Grimstad fine sandy loam, 0 to 3 percent slopes	14	696.5	11.4%
I25A	Hamar loamy fine sand, Aspen Parkland, 0 to 1 percent slopes	90	10.6	0.2%
126A	Hamerly loam, 0 to 2 percent slopes	16	39.6	0.6%
I27A	Hamre muck, 0 to 1 percent slopes	100	93.4	1.5%
138A	Kratka fine sandy loam, loamy till substratum, 0 to 1 percent slopes	94	13.5	0.2%
143A	Mavie fine sandy loam, 0 to 2 percent slopes	95	266.2	4.3%
I47A	Poppleton fine sand, 0 to 2 percent slopes	3	75.1	1.2%
153A	Roliss loam, 0 to 2 percent slopes	95	1,366.0	22.3%
155A	Rosewood fine sandy loam, Aspen Parkland, 0 to 1 percent slopes	90	527.0	8.6%
I57B	Sandberg-Radium complex, 1 to 6 percent slopes	0	11.2	0.2%
l61A	Strandquist loam, 0 to 2 percent slopes	96	60.6	1.0%
162A	Syrene sandy loam, 0 to 2 percent slopes	95	48.9	0.8%

Hydric Rating by Map Unit— Summary by Map Unit — Pennington County, Minnesota (MN113)					
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI	
164A	Ulen fine sandy loam, Aspen Parkland, 0 to 2 percent slopes	14	412.8	6.7%	
166A	Vallers loam, 0 to 2 percent slopes	91	378.7	6.2%	
170A	Strathcona fine sandy loam, 0 to 2 percent slopes	95	745.3	12.2%	
175A	Radium-Sandberg- Garborg complex, 0 to 3 percent slopes	5	4.2	0.1%	
1690A	Kittson loam, wet, 0 to 2 percent slopes	5	189.1	3.1%	
Totals for Area of Inter	Totals for Area of Interest			100.0%	

USDA Natural Resources

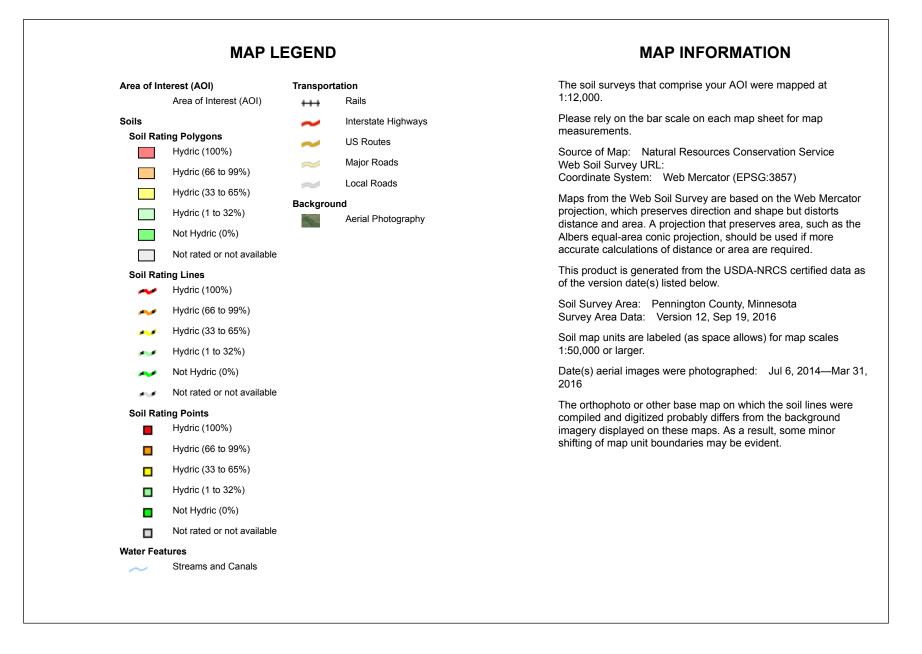

Conservation Service

Web Soil Survey National Cooperative Soil Survey

Hydric Rating by Map Unit

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
I4A	Berner, Rosewood, and Strathcona soils, seepy, 0 to 2 percent slopes	100	61.6	1.9%
18A	Cathro muck, 0 to 1 percent slopes	100	5.2	0.2%
19A	Clearwater clay, 0 to 2 percent slopes	98	124.7	3.9%
I13A	Espelie fine sandy loam, till substratum, 0 to 2 percent slopes	93	27.3	0.8%
I15A	Hecla loamy fine sand, 0 to 2 percent slopes	5	252.3	7.8%
I17A	Foldahl fine sandy loam, loamy till substratum, 0 to 3 percent slopes	16	84.6	2.6%
I19A	Foxhome sandy loam, 0 to 3 percent slopes	15	28.7	0.9%
I24A	Grimstad fine sandy loam, 0 to 3 percent slopes	14	96.1	3.0%
I27A	Hamre muck, 0 to 1 percent slopes	100	56.9	1.8%
132A	Hilaire fine sandy loam, clayey till substratum, 0 to 3 percent slopes	16	78.9	2.5%
I34A	Huot fine sandy loam, clayey till substratum, 0 to 3 percent slopes	15	27.8	0.9%
138A	Kratka fine sandy loam, loamy till substratum, 0 to 1 percent slopes	94	5.5	0.2%
I41A	Markey muck, 0 to 1 percent slopes	100	15.9	0.5%
143A	Mavie fine sandy loam, 0 to 2 percent slopes	95	63.2	2.0%
I48A	Radium loamy sand, 0 to 2 percent slopes	5	6.2	0.2%
I53A	Roliss loam, 0 to 2 percent slopes	95	1,475.0	45.8%
155A	Rosewood fine sandy loam, Aspen Parkland, 0 to 1 percent slopes	90	108.3	3.4%

Hydric Rating by Map Unit— Summary by Map Unit — Pennington County, Minnesota (MN113)									
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI					
I58A	Seelyeville muck, 0 to 1 percent slopes	100	9.9	0.3%					
162A	Syrene sandy loam, 0 to 2 percent slopes	95	6.2	0.2%					
163A	Thiefriver fine sandy loam, clayey till substratum, 0 to 2 percent slopes	94	17.0	0.5%					
164A	Ulen fine sandy loam, Aspen Parkland, 0 to 2 percent slopes	14	78.6	2.4%					
166A	Vallers loam, 0 to 2 percent slopes	91	214.2	6.7%					
170A	Strathcona fine sandy loam, 0 to 2 percent slopes	95	279.3	8.7%					
175A	Radium-Sandberg- Garborg complex, 0 to 3 percent slopes	5	6.5	0.2%					
1690A	Kittson loam, wet, 0 to 2 percent slopes	5	50.7	1.6%					
IGp	Pits, gravel and sand	0	39.2	1.2%					
Totals for Area of Inter	rest	1	3,219.6	100.0%					



USDA Natural Resources

Conservation Service

Hydric Rating by Map Unit

Hydric F	Rating by Map Unit— Sum	nary by Map Unit — Pe	nnington County, Minnesota	(MN113)
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
I4A	Berner, Rosewood, and Strathcona soils, seepy, 0 to 2 percent slopes	100	10.6	0.6%
15A	Borup loam, 0 to 1 percent slopes	92	334.3	17.8%
116F	Fluvaquents,frequently flooded-Hapludolls complex, 0 to 30 percent slopes	58	54.8	2.9%
I22A	Glyndon loam, Aspen Parkland, 0 to 2 percent slopes	15	327.4	17.4%
I24A	Grimstad fine sandy 14 loam, 0 to 3 percent slopes		2.8	0.2%
I27A	Hamre muck, 0 to 1 percent slopes	100	15.2	0.8%
143A	Mavie fine sandy loam, 0 to 2 percent slopes	95	11.5	0.6%
153A	Roliss loam, 0 to 2 percent slopes	95	700.8	37.3%
I57B	Sandberg-Radium complex, 1 to 6 percent slopes	0	55.8	3.0%
I64A	Ulen fine sandy loam, Aspen Parkland, 0 to 2 percent slopes	14	23.4	1.2%
166A	Vallers loam, 0 to 2 percent slopes	91	123.1	6.5%
170A	Strathcona fine sandy loam, 0 to 2 percent slopes	95	187.3	10.0%
1690A	Kittson loam, wet, 0 to 2 percent slopes	5	34.2	1.8%
Totals for Area of Inter	rest		1,881.2	100.0%

USDA

Description

This rating indicates the percentage of map units that meets the criteria for hydric soils. Map units are composed of one or more map unit components or soil types, each of which is rated as hydric soil or not hydric. Map units that are made up dominantly of hydric soils may have small areas of minor nonhydric components in the higher positions on the landform, and map units that are made up dominantly of nonhydric soils may have small areas of minor hydric components in the lower positions on the landform. Each map unit is rated based on its respective components and the percentage of each component within the map unit.

The thematic map is color coded based on the composition of hydric components. The five color classes are separated as 100 percent hydric components, 66 to 99 percent hydric components, 33 to 65 percent hydric components, 1 to 32 percent hydric components, and less than one percent hydric components.

In Web Soil Survey, the Summary by Map Unit table that is displayed below the map pane contains a column named 'Rating'. In this column the percentage of each map unit that is classified as hydric is displayed.

Hydric soils are defined by the National Technical Committee for Hydric Soils (NTCHS) as soils that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part (Federal Register, 1994). Under natural conditions, these soils are either saturated or inundated long enough during the growing season to support the growth and reproduction of hydrophytic vegetation.

The NTCHS definition identifies general soil properties that are associated with wetness. In order to determine whether a specific soil is a hydric soil or nonhydric soil, however, more specific information, such as information about the depth and duration of the water table, is needed. Thus, criteria that identify those estimated soil properties unique to hydric soils have been established (Federal Register, 2002). These criteria are used to identify map unit components that normally are associated with wetlands. The criteria used are selected estimated soil properties that are described in "Soil Taxonomy" (Soil Survey Staff, 1999) and "Keys to Soil Taxonomy" (Soil Survey Staff, 1993).

If soils are wet enough for a long enough period of time to be considered hydric, they should exhibit certain properties that can be easily observed in the field. These visible properties are indicators of hydric soils. The indicators used to make onsite determinations of hydric soils are specified in "Field Indicators of Hydric Soils in the United States" (Hurt and Vasilas, 2006).

References:

Federal Register. July 13, 1994. Changes in hydric soils of the United States. Federal Register. September 18, 2002. Hydric soils of the United States. Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18.

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service. U.S. Department of Agriculture Handbook 436.

Soil Survey Staff. 2006. Keys to soil taxonomy. 10th edition. U.S. Department of Agriculture, Natural Resources Conservation Service.

Rating Options

Aggregation Method: Percent Present Component Percent Cutoff: None Specified Tie-break Rule: Lower

Appendix F

Plant List

Genus/Species	Common Name	Indicator Status*	Dominant Wetland plants	Dominant Upland Plants	Stratum
Acer negundo	ash-leaf maple	FAC	x		tree
Agrostis stolonifera	spreading bent	FACW	х		herb
Alisma subcordatum	American water-plantain	OBL			herb
Ambrosia artemisiifolia	annual ragweed	FACU			herb
Anemone canadensis	round-leaf thimbleweed	FACW			herb
Apocynum cannabinum	Indian-hemp	FAC			herb
Arctium minus	lesser burrdock	FACU			herb
Asclepias syriaca	common milkweed	UPL			herb
Beckmannia syzigachne	American slough grass	OBL	x		herb
Bromus inermis	smooth brome	UPL		x	herb
Carex pellita	woolly sedge	OBL	x		herb
Cirsium arvense	Canadian thistle	FACU		x	herb
Cornus alba	red osier	FACW		x	shrub
Cyperus esculentus	chufa	FACW		-	herb
Eleocharis palustris	common spike-rush	OBL			herb
Elymus repens	creeping wild rye	FACU	x		herb
Epilobium ciliatum	fringed willowherb	FACW	x		herb
Equisetum hyemale	tall scouring-rush	FACW	x		herb
Equisetum palustre	marsh horsetail	FACW	x		herb
Gentiana andrewsii	closed bottle gentian	FAC	~		herb
Hordeum jubatum	fox-tail barley	FACW	x		herb
Juncus balticus	Baltic rush	FACW	^		herb
Lithospermum latifolium	American stoneseed	NL/UPL			herb
Lotus corniculatus	garden bird's-foot-trefoil	FACU		x	herb
Lycopus virginicus	Virginia water-horehound	OBL		^	herb
Melilotus officinalis	yellow sweet-clover	FACU	x	x	herb
Panicum virgatum	wand panic grass	FAC	^	x	herb
Persicaria amphibia	water smartweed	OBL		^	herb
Persicaria maculosa	spotted lady's-thumb	FACW			herb
Phalaris arundinacea	reed canary grass	FACW		~	herb
Phleum pratense	common timothy	FACU	X	X	herb
Plantago major		FACU			herb
Poa pratensis	great plantain	FAC			
	Kentucky blue grass	FACU		X	herb
Populus balsamifera	balsam poplar			X	shrub
Populus tremuloides	quaking aspen	FAC FACU		X	tree/shrub
Prunus virginiana	choke cherry			X	shrub
Quercus macrocarpa	burr oak	FACU		X	tree
Ranunculus pensylvanicus	Pennsylvania buttercup	FACW	X		herb
Rosa arkansana	prairie rose	FACU			herb
Rumex crispus	curly dock	FAC	X		herb
Salix petiolaris	meadow willow	OBL	X		shrub
Schizachyrium scoparium	little false bluestem	FACU		X	herb
Setaria pumila	yellow bristle grass	FACU			herb
Sium suave	water parsnip	OBL	x		herb
Solidago canadensis	Canadian goldenrod	FACU			herb
Solidago gigantea	late goldenrod	FAC			herb
Sonchus arvensis	field sow-thistle	FAC			herb
Spartina pectinata	freshwater cord grass	FACW	x		herb
Sphagnum sp.	Sphagnum moss		x		herb

Symphoricarpos albus	common snowberry	UPL			herb
Symphyotrichum lanceolatum	white panicled American-aster	FACW			herb
Symphyotrichum novae-angliae	New England American-aster	FACW			herb
Symphyotrichum puniceum	purple-stem American-aster	OBL			herb
Taraxacum officinale	common dandelion	FACU			herb
Thalictrum dioicum	early meadow-rue	FACW			herb
Toxicodendron radicans	eastern poison ivy	FACU		х	herb
Trifolium hybridum	alsike clover	FACU			herb
Typha sp.	cattail	OBL	х		herb
Urtica dioica	stinging nettle	FAC			herb
Viburnum opulus	highbush-cranberry	FAC		х	shrub
Vicia Americana	American purple vetch	FACU			herb
Zizia aurea	golden alexanders	FAC			herb

* Lichvar RW, Banks DL, Kirchner WN, Melvin NC (2016) The National Wetland Plant List: 2016 wetland ratings. Phytoneuron 2016-30: 1-17. 28 April 2016. ISSN 2153 733X

Appendix G

Aquatic Resource Data Forms

Wetland Number	Data form test hole number					
1	19					
2	18					
3	16					
3	17					
4	15					
5	14					
6	13					
7	12					
8	1					
0	10					
9	11					
10	9					
11	7					
12	5					
13	3					
14	2					
15	22					
10	20					
16	21					
17	24					

Table: Wetland number and corresponding data form

Project Site:	Black R	iver Impo	undment Site				City	/County	<i>r</i> :	Penningt	on	Sampling	Date:	<u>8-23-</u>	2017
Applicant/Owner:	Houstor	n Enginee	ring, Inc.							State:	MN	Sampling	Point:	<u>1u</u>	
Investigator(s):	Donna .	Jacob and	Mark D Aanens	son			Sec	tion, To	wnship, F	Range:	<u>S35-T153</u>	8N-R45W			
Landform (hillslope,	terrace,	etc.): <u>d</u>	litch slope			Loca	al relief (o	oncave,	, convex,	none):	none		S	lope (%): <u>15</u>
Subregion (LRR):	E		Lat: <u>48.02</u>	1253			Long:	-96.40	00914			Datum:	NAD19	<u>83</u>	
Soil Map Unit Name	: <u>San</u>	dberg-Rad	dium complex								NWI clas	sification:	<u>Uplan</u>	<u>d</u>	
Are climatic / hydrold	ogic conc	ditions on	the site typical for	or this	time of year?	Yes	⊠ N		(If no, e	xplain in l	Remarks.)				
Are Vegetation], Soil	X,	or Hydrology	⊠,	significantly dis	sturbec	d? /	Are "Nor	mal Circu	mstances	s" present?	? Yes	\boxtimes	No	
Are Vegetation], Soil	□,	or Hydrology	□,	naturally proble	ematic	? (lf neede	d, explair	n any ans	wers in Re	emarks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Pomarka							
Wetland Hydrology Present?	Yes	No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes
Hydric Soil Present?	Yes	No	\boxtimes				
Hydrophytic Vegetation Present?	Yes	No	\boxtimes				

Remarks:

Tree Stratum (Plot Size:)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test Worksheet:				
1 2				Number of Dominant Species That Are OBL, FACW, or FAC:	<u>0</u>	(A)		
3 4				Total Number of Dominant Species Across All Strata:	1	(B)		
Sapling/Shrub Stratum (Plot Size:)		= Total Cover	r	Percent of Dominant Species That Are OBL, FACW, or FAC:	<u>0</u>	(A/B)		
1				Prevalence Index worksheet:				
2				Total % Cover of:	Multiply b	<u>y:</u>		
3				OBL species	x1 =			
4				FACW species	x2 =			
5				FAC species	x3 =			
		= Total Cover	r	FACU species	x4 =			
Herb Stratum (Plot Size: 5' radius)				UPL species	x5 =			
1. Bromus inermis	<u>100</u>	x	UPL	Column Totals:	(A)		(B)	
2				Prevalence In	dex = B/A =	·		
3				Hydrophytic Vegetation Indica	tors:			
4				1 – Rapid Test for Hy	drophytic V	egetation		
5				2 - Dominance Test is	s >50%			
6				3 – Prevalence Index	is ≤3.0¹			
7				4 - Morphological Ada		Provide su	nnorting d	lata in
8				Remarks or on a			pporting d	
9				Problematic Hydroph	ytic Vegetat	ion ¹ (Expla	ain)	
10				¹ Indicators of hydric soil and wetl	and hydrolo	gy must b	e present,	,
	<u>100</u>	= Total Cover	r	unless disturbed or problematic.			•	
Woody Vine Stratum (Plot Size:)								
1								
2								
		= Total Cover	r					
% Bare Ground in Herb Stratum				Hydrophytic Vegetation Preser	nt? Yes		No	\boxtimes
Remarks:								

SOI	L									Sampling Point: 1u		
Prof	ile Descr	iption: (Describe to	o the depth need	ed to doc	ument the inc	dicator or o	confirm the a	absence of ind	licators.)	· · ·		
	Depth	Matrix			Re	edox Featu	ures		_			
(incl	hes)	Color (moist)	%	Color (Moist)		%	Type ¹	Loc ²	Textu	Ire Remarks		
<u>(</u>	<u>0-15</u>	<u>10YR 2/2</u>	<u>100</u>						<u>C</u> :	<u>S</u>		
-												
-												
-												
-												
-												
-												
-												
							ated Sand G	rains. ² Locat		Pore Lining, M=Matrix		
		ndicators: (Applical	ble to all LRRs, u	_		,	(0.4)			dicators for Problematic Hydric Soils ³ :		
	Histoso	. ,			Sandy Gley		(S4)			1 cm Muck (A9) (LRR I, J)		
		pipedon (A2)			Sandy Red					Coast Prairie Redox (A16) (LRR F, G, H)		
		istic (A3)			Stripped Ma							
		en Sulfide (A4)			Loamy Muc	-				High Plains Depressions (F16)		
		d Layers (A5) (LRR			Loamy Gle		(FZ)			(LRR H outside of MLRA 72 & 73)		
		uck (A9) (LRR F, G d Dalaw Dark Surfa		_	Depleted M				_			
	-	d Below Dark Surfa ark Surface (A12)	ice (ATT)		Redox Darl Depleted D		. ,			Red Parent Material (TF2) Very Shallow Dark Surface (TF 12)		
		Mucky Mineral (S1)			Redox Dep		. ,			Other (Explain in Remarks)		
	-	Mucky Peat or Pea			-					dicators of hydrophytic vegetation and wetland		
		ucky Peat or Peat (,	 High Plains Depressions (F16) (MLRA 72 & 73 of LRR H) 				hydrology must be present, unless disturbed or problematic.			
<u> </u>		ayer (if present):			(
Туре		,										
	th (Inches	 							Ну	rdric Soils Present? Yes 🗌 No 🛛		
<u> </u>	arks:	,							IIy			
	DROLOG	2V										
		rology Indicators:										
	-	ators (minimum of o		ck all that	t apply)				Seco	ondary Indicators (2 or more required)		
		e Water (A1)			Salt Crust (B11)				Surface Soil Cracks (B6)		
		ater Table (A2)			Aquatic Inv		(B13)			Sparsely Vegetated Concave Surface (B8)		
	-	ion (A3)			Hydrogen S					Drainage Patterns (B10)		
		Marks (B1)			Dry Seasor		. ,			Oxidized Rhizospheres along Living Roots (C3)		

Oxidized Rhizospheres along Living Roots (C3)

(where not tilled)

Thin Muck Surface (C7)

Depth (inches):

Depth (inches):

Other (Explain in Remarks)

Presence of Reduced Iron (C4)

(v	vhere	tilled)
		unou,

- Crayfish Burrows (C8)
- Saturation Visible on Aerial Imagery (C9)
- Geomorphic Position (D2)
- FAC-Neutral Test (D5)

Wetland Hydrology Present?

Frost-Heave Hummocks (D7) (LRR F)

Yes

No

 \boxtimes

	Water-Stained Leaves (B9)							
Field	Observations:							
Surfa	ace Water Present?	Yes						

(includes capillary fringe)

Sediment Deposits (B2)

Algal Mat or Crust (B4)

Inundation Visible on Aerial Imagery (B7)

Drift Deposits (B3)

Iron Deposits (B5)

Water Table Present? Yes No \boxtimes Depth (inches): Saturation Present?

Yes

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

No

No

 \boxtimes

 \boxtimes

Remarks:

Project Site:	Black Riv	ver Impou	undment Site			City	//County:	Penning	ton	Sampling	Date:	<u>8-23-</u>	2017
Applicant/Owner:	Houston	Engineer	ring, Inc.					State:	MN	Sampling	Point:	<u>1w</u>	
Investigator(s):	Donna J	acob and	Mark D Aanen	son		Sec	ction, Townsh	ip, Range:	<u>S35-T153</u>	N-R45W			
Landform (hillslope,	terrace, e	tc.): <u>d</u>	itch bottom		Loc	al relief (c	concave, conv	vex, none):	<u>concave</u>		S	lope (%): <u>3</u>
Subregion (LRR):	E		Lat: <u>48.02</u>	1212		Long:	-96.400780	<u>)</u>		Datum:	NAD198	33	
Soil Map Unit Name	: <u>Sand</u>	berg-Rac	lium complex						NWI class	sification:	R5UB	<u>Fx</u>	
Are climatic / hydrold	ogic condi	tions on t	the site typical f	or this	time of year? Yes	🖾 No	o 🗌 (Ifn	o, explain in	Remarks.)				
Are Vegetation], Soil	⊠,	or Hydrology	X,	significantly disturbe	d? A	Are "Normal C	ircumstance	s" present?	Yes	\boxtimes	No	
Are Vegetation], Soil	□,	or Hydrology	□,	naturally problemati	c? (If needed, ex	plain any ans	wers in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	\boxtimes	No					
Hydric Soil Present?	Yes	\boxtimes	No					
Wetland Hydrology Present?	Yes	\boxtimes	No	Is the Sampling Area within a Wetland?	Yes	\boxtimes	No	
Remarks [.]								

Remarks:

Tree Stratum (Plot Size:)	Absolute <u>% Cover</u>	Dominant Species?	Indicator Status	Dominance Test Worksheet:
1 2				Number of Dominant Species That Are OBL, FACW, or FAC: (A)
3 4				Total Number of Dominant Species Across All Strata: (B)
Sapling/Shrub Stratum (Plot Size:)		= Total Cover		Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B)
1				Prevalence Index worksheet:
2				Total % Cover of: Multiply by:
3.				OBL species x1 =
4				FACW species x2 =
5				FAC species x3 =
		= Total Cover		FACU species x4 =
Herb Stratum (Plot Size: 4' x 6')				UPL species x5 =
1. Equisetum palustre	<u>80</u>	<u>x</u>	FACW	Column Totals: (A) (B)
2. Alisma subcordatum	<u>5</u>		<u>OBL</u>	Prevalence Index = B/A =
3. Phalaris arundinacea	<u>5</u>		FACW	Hydrophytic Vegetation Indicators:
4. Solidago gigantea	<u>5</u>		FAC	x 1 – Rapid Test for Hydrophytic Vegetation
5. Arctium minus	<u>5</u>		FACU	2 - Dominance Test is >50%
6				3 – Prevalence Index is ≤3.0 ¹
7				 4 - Morphological Adaptations¹ (Provide supporting data in
8				Remarks or on a separate sheet)
9				Problematic Hydrophytic Vegetation ¹ (Explain)
10				¹ Indicators of hydric soil and wetland hydrology must be present,
	<u>100</u>	= Total Cover		unless disturbed or problematic.
Woody Vine Stratum (Plot Size:)				
1				
2				
		= Total Cover		
% Bare Ground in Herb Stratum				Hydrophytic Vegetation Present? Yes 🛛 No 🗌
Remarks:				

s	ο	IL	

Sampling Point: 1w

Profile D	escription: (Describ	e to the dep	th neede	d to docu	ument the indicator or	confirm the	absence	of indicators	s.)					
Depth	Matr				Redox Feat	tures								
(inches)	Color (moist)	%	C	olor (Mo	ist) %	Type ¹	_Loc ²	2 <u>Te</u>	exture		Rem	arks		
<u>0-3</u>	<u>N2.5/0</u>	<u>100</u>						_	Muck					
<u>3-14</u>	<u>2.5Y 6/2</u>	<u>75</u>		2.5Y 5/6	<u>5</u>	<u>C</u>	M		<u>CL</u>					
				<u>10Y 5/0</u>	<u>20</u>	<u>RM</u>	M			·				
	· <u> </u>		-					_						
			-					_		·				
								_						
			-					_						
			-					_		·				
¹ Type: C:	= Concentration, D=D	Depletion, RI	M=Reduo	ced Matri	x, CS=Covered or Co	ated Sand G	Grains. ² l	Location: PL	_=Pore	ELining, M=Matrix				
Hydric S	oil Indicators: (Appl	icable to all	LRRs, ur	nless oth	erwise noted.)				Indica	atic Hydri	ic Soils ³ :			
🗌 His	tosol (A1)				Sandy Gleyed Matrix	x (S4)				1 cm Muck (A9)	(LRR I, J)			
🗆 His	tic Epipedon (A2)				Sandy Redox (S5)					Coast Prairie Re	dox (A16)	(LRR F, C	G , H)	
🗆 Bla	ck Histic (A3)				Stripped Matrix (S6)					Dark Surface (S7	7) (LRR G)		
🗆 Ну	drogen Sulfide (A4)				Loamy Mucky Miner	al (F1)				High Plains Depr	ressions (F	16)		
□ Str	atified Layers (A5) (L	.RR F)		\boxtimes	Loamy Gleyed Matri	x (F2)				(LRR H outsid	e of MLR	A 72 & 73)		
□ 1 c	m Muck (A9) (LRR F	, G , H)		Depleted Matrix (F3)										
🗌 De	pleted Below Dark Si	urface (A11)			Redox Dark Surface	Red Parent Mate	rial (TF2)							
🗌 Thi	ck Dark Surface (A12	2)			Depleted Dark Surfa	ice (F7)				Very Shallow Da	rk Surface	(TF 12)		
🗌 Sa	ndy Mucky Mineral (S	51)			Redox Depressions	(F8)				Other (Explain in				
2.5	CM Mucky Peat or F	Peat (S2)(LF	RR G, H)		High Plains Depress	ions (F16)				ators of hydrophyti logy must be prese				
	m Mucky Peat or Pea		R F)		(MLRA 72 & 73 of	LRR H)				ematic.				
Restricti	ve Layer (if present):												
Type:														
Depth (In	ches):								Hydri	c Soils Present?	Yes		lo	
Remarks	:													
HYDRO	LOGY													
Wetland	Hydrology Indicato	rs:												
Primary I	ndicators (minimum o	of one requir	ed; chec	k all that	apply)			S	Second	lary Indicators (2 o	r more rec	luired)		
🖾 Su	rface Water (A1)				Salt Crust (B11)			[_ s	urface Soil Cracks	(B6)			
🗆 Hig	gh Water Table (A2)				Aquatic Invertebrate	s (B13)		0	S	parsely Vegetated	Concave	Surface (E	88)	
🔲 Sa	turation (A3)				Hydrogen Sulfide Od	dor (C1)		C	D	rainage Patterns (B10)			
D Wa	ater Marks (B1)				Dry Season Water T	able (C2)		[_ C	xidized Rhizosphe	eres along	Living Roo	ots (C	3)
🗆 Se	diment Deposits (B2)			Oxidized Rhizosphe	res along Liv	ving Roots	s (C3)		(where tilled)				
🗌 Dr	ft Deposits (B3)				(where not tilled)			0	_ C	rayfish Burrows (C	(8)			
	gal Mat or Crust (B4)				Presence of Reduce	d Iron (C4)		0	_ s	aturation Visible o	n Aerial Im	nagery (C9)	
🗆 Iro	n Deposits (B5)				Thin Muck Surface (C7)			🛛 G	eomorphic Positio	n (D2)			
🔲 Inu	Indation Visible on A	erial Imager	y (B7)		Other (Explain in Re	marks)			S F	AC-Neutral Test ([D5)			
ωw	ater-Stained Leave	es (B9)						0] F	rost-Heave Humm	ocks (D7)	(LRR F)		
Field Ob	servations:	. ,												
Surface \	Vater Present?	Yes 🗵	No		Depth (inches):	2								
Water Ta	ble Present?	Yes 🗵			Depth (inches):	0								
Saturatio	n Present?		_		Depth (inches):	0		Wetland	Hydro	logy Present?	Yes [lo	
(includes capillary fringe)									iyuro	ogy i lesellt i	103		••	
Describe Recorded Data (stream gauge, monitoring w					erial photos, previous	inspections), if availa	able:						
Remark	s:								_				_	

Project Site:	Black	River	Impou	Indment Sit	te		City/County: <u>Penni</u>				Penningt	<u>gton</u> Samplir		Date:	<u>8-23-</u>	2017
Applicant/Owner:	Hous	ton Eng	gineer	ing, Inc.							State:	MN	Sampling	Point:	<u>2u</u>	
Investigator(s):	Donn	a Jaco	b and	Mark D Aa	nenson			S	ection, T	ownship, I	Range:	<u>S35-T153</u>	N-45W			
Landform (hillslope,	terrace	e, etc.):	di	itch slope			Loc	al relief	(concav	e, convex,	none):	none		5	Slope (%): <u>5</u>
Subregion (LRR):	E			Lat: 48	8.022506			Lon	g: <u>-96.3</u>	392829			Datum:	NAD19	<u>83</u>	
Soil Map Unit Name	: <u>St</u>	trathcol	na fine	e sandy loa	<u>m</u>							NWI class	sification:	<u>Uplan</u>	<u>d</u>	
Are climatic / hydrold	ogic co	ondition	s on t	he site typic	cal for this	time of year?	Yes	\boxtimes	No 🗌	(lf no, e	explain in	Remarks.)				
Are Vegetation], S	ioil	X,	or Hydrolo	gy ⊠,	significantly d	listurbe	d?	Are "No	rmal Circu	umstances	s" present?	Yes	\boxtimes	No	
Are Vegetation], s	oil	□,	or Hydrolo	gy □,	naturally prob	lematic	;?	(If need	ed, explai	n any ans	wers in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Pomarke:						100			
Wetland Hydrology Present?	Yes		No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes	
Hydric Soil Present?	Yes	\boxtimes	No						
Hydrophytic Vegetation Present?	Yes		No	\boxtimes					

Remarks:

Tree Stratum (Plot Size:)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test Worksheet:				
1 2				Number of Dominant Species That Are OBL, FACW, or FAC:	<u>0</u>	(A)		
3 4.				Total Number of Dominant Species Across All Strata:	2	(B)		
Sapling/Shrub Stratum (Plot Size:)		= Total Cover		Percent of Dominant Species That Are OBL, FACW, or FAC:	<u>0</u>	(A/B)		
1				Prevalence Index worksheet:				
2				Total % Cover of:	Multiply by	v:		
3.				OBL species	x1 =	<u> </u>		
4.				FACW species	x2 =			
5.				FAC species	x3 =			
		= Total Cover		FACU species	x4 =			
Herb Stratum (Plot Size: 3' x 6')				UPL species	x5 =			
1. <u>Poa pratensis</u>	<u>45</u>	X	FACU	Column Totals:	(A)		(B)	
2. Bromus inermis	<u>45</u>	X	<u>UPL</u>	Prevalence Inc	dex = B/A =			
3. Rosa arkansana	<u>10</u>		FACU	Hydrophytic Vegetation Indicat				
4				1 – Rapid Test for Hyd	drophytic Ve	egetation		
5				2 - Dominance Test is	s >50%			
6				3 – Prevalence Index	is ≤3.0¹			
7 8				4 - Morphological Ada Remarks or on a s			pporting d	ata in
9				Problematic Hydrophy	/tic Vegetati	ion ¹ (Exp	ain)	
10	100	= Total Cover		¹ Indicators of hydric soil and wetla unless disturbed or problematic.	and hydrolo	gy must t	e present,	
Woody Vine Stratum (Plot Size:								
1								
2								
		= Total Cover						
% Bare Ground in Herb Stratum				Hydrophytic Vegetation Presen	it? Yes		No	
Remarks:								
Mowed.								

s	ο	IL	

Sampling Point: 2u

Profile Des	cription: (Describ	e to the o	depth n	eeded	to docu	ument the ind	icator or	confirm the	absence	of indicate	ors.)	Gamping Contractor
Depth	Color (moist) % Color (Moist) % Type ¹											
(inches)	Color (moist)	C	%	Col	or (Moi	st) %	Loc ²	-	Texture	re Remarks		
<u>0-10</u>	<u>2.5Y 2/1</u>	1	00	_							Ŀ	·
<u>10-19</u>	<u>2.5Y 4/1</u>	<u>ç</u>	<u>98</u>	<u>2.</u>	5Y 4/4	<u>2</u>		<u>C</u>	M		<u>C</u>	
		_		_								
				-						_		
		_		-						_		
				_						_		
		_		-						_		
				-								
¹ Type: C= C	Concentration, D=D	Depletion	, RM=F	Reduce	d Matri	x, CS=Cover	ed or Co	ated Sand (Grains. ² L	ocation:	PL=Po	ore Lining, M=Matrix
Hydric Soil	Indicators: (Appl	icable to	all LRF	Rs, unle	ss oth							licators for Problematic Hydric Soils ³ :
Histos	sol (A1)					Sandy Gley	ed Matrix	x (S4)				1 cm Muck (A9) (LRR I, J)
Histic	Epipedon (A2)					Sandy Redo	ox (S5)					Coast Prairie Redox (A16) (LRR F, G, H)
Black	Histic (A3)					Stripped Ma	trix (S6)					Dark Surface (S7) (LRR G)
Hydro	ogen Sulfide (A4)			Loamy Muc	ky Miner	al (F1)				High Plains Depressions (F16)		
Stratified Layers (A5) (LRR F) Loamy Gleyed Matrix (F2) 1 cm Muck (A0) (LRR F) Dealeted Matrix (F2)												(LRR H outside of MLRA 72 & 73)
1 cm Muck (A9) (LRR F, G, H) Depleted Matrix (F3)												Reduced Vertic (F18)
	eted Below Dark Su	-	.11)			Redox Dark		. ,				Red Parent Material (TF2)
_	Dark Surface (A12	-				Depleted Da						Very Shallow Dark Surface (TF 12)
_ `	y Mucky Mineral (S	,				Redox Depr		. ,			3Ind	Other (Explain in Remarks) dicators of hydrophytic vegetation and wetland
	M Mucky Peat or F			э, H)		High Plains	•	. ,			hydı	rology must be present, unless disturbed or
	Mucky Peat or Pea		RRF)			(MLRA 72	& /3 01	LRR H)			prob	blematic.
	Layer (if present)).										
Type:												
Depth (Inch											Hyd	dric Soils Present? Yes 🛛 No 🗌
Remarks:												
HYDROLO	JGY											
	drology Indicato	rs:										
-	icators (minimum o		quired;	check a	all that	apply)					Secor	ondary Indicators (2 or more required)
□ Surfa	ace Water (A1)		-			Salt Crust (E	311)					Surface Soil Cracks (B6)
	Water Table (A2)					Aquatic Inve	-	s (B13)			_	Sparsely Vegetated Concave Surface (B8)
-	ration (A3)					Hydrogen S		. ,				Drainage Patterns (B10)
	er Marks (B1)					Dry Season						Oxidized Rhizospheres along Living Roots (C3)
	ment Deposits (B2)				Oxidized Rh			ving Roots	; (C3)	_	(where tilled)
	Deposits (B3)	,			_	(where not		0	U	()		Crayfish Burrows (C8)
	Mat or Crust (B4)					Presence of	-	d Iron (C4)				Saturation Visible on Aerial Imagery (C9)
	Deposits (B5)					Thin Muck S	Surface (C7)				Geomorphic Position (D2)
	dation Visible on A	erial Ima	gery (B	7)		Other (Expla						FAC-Neutral Test (D5)
□ Water-Stained Leaves (B9)										Frost-Heave Hummocks (D7) (LRR F)		
Field Obse		()										
Surface Wa	iter Present?	Yes		No	\boxtimes	Depth (inches):					
Water Table	e Present?	Yes		No		• •	inches):					
Saturation F	Present?	Yes		No			-			Wotland	d Uvdi	Irology Present? Yes 🔲 No 🛛
	ncludes capillary fringe)									u nyu		
Describe R	be Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:									ble:		
Remarks:												

Project Site:	Black	River	Impou	Indment Si	te		City/County: Penn			Penningt	on	Sampling	Date:	<u>8-23-</u>	2017	
Applicant/Owner:	Hous	ton Eng	gineer	ing, Inc.							State:	MN	Sampling	Point:	<u>2w</u>	
Investigator(s):	Mark D Aa	anenson			S	ection, T	ownship, I	Range:	<u>S35-T153</u>	N-45W						
Landform (hillslope,	terrace	e, etc.):	di	itch bottom	<u>l</u>		Loc	al relief	(concave	e, convex,	none):	<u>concave</u>		5	Slope (%): <u>1</u>
Subregion (LRR):	E			Lat: <u>4</u>	8.022515			Long	g: <u>-96.3</u>	392865		I	Datum:	NAD19	<u>83</u>	
Soil Map Unit Name	: <u>St</u>	trathcol	na fine	e sandy loa	<u>im</u>							NWI class	sification:	Uplan	d	
Are climatic / hydrold	ogic co	ondition	s on t	he site typi	cal for this	time of year?	Yes	X I	No 🗌	(If no, e	explain in	Remarks.)				
Are Vegetation], S	oil	⊠,	or Hydrold	ogy ⊠,	significantly of	listurbe	d?	Are "No	rmal Circu	umstances	s" present?	Yes	\boxtimes	No	
Are Vegetation], S	oil	□,	or Hydrold	ogy □,	naturally prob	lematic	;?	(If need	ed, explai	n any ans	wers in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	\boxtimes	No					
Hydric Soil Present?	Yes	\boxtimes	No					
Wetland Hydrology Present?	Yes	\boxtimes	No	Is the Sampling Area within a Wetland?	Yes	\boxtimes	No	
Remarks [.]								

Remarks:

Tree Stratum (Plot Size:)	Absolute <u>% Cover</u>	Dominant Species?	Indicator Status	Dominance Test Worksheet:
1 2				Number of Dominant Species That Are OBL, FACW, or FAC: (A)
3 4				Total Number of Dominant Species Across All Strata: (B)
Sapling/Shrub Stratum (Plot Size:)		= Total Cove	er	Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B)
1				Prevalence Index worksheet:
2				Total % Cover of: Multiply by:
3				OBL species x1 =
4				FACW species x2 =
5				FAC species x3 =
		= Total Cove	er	FACU species x4 =
Herb Stratum (Plot Size: 4' x 6')				UPL species x5 =
1. Phalaris arundinacea	<u>30</u>	X	FACW	Column Totals: (A) (B)
2. Spartina pectinata	<u>30</u>	x	FACW	Prevalence Index = B/A =
3. <u>Typha sp.</u>	<u>20</u>	X	<u>OBL</u>	Hydrophytic Vegetation Indicators:
4. Rumex crispus	<u>10</u>		FAC	<u>x</u> 1 – Rapid Test for Hydrophytic Vegetation
5. Poa pratensis	<u>10</u>		FACU	2 - Dominance Test is >50%
6				3 – Prevalence Index is ≤3.0¹
7				4 - Morphological Adaptations ¹ (Provide supporting data in
8				Remarks or on a separate sheet)
9				Problematic Hydrophytic Vegetation ¹ (Explain)
10				¹ Indicators of hydric soil and wetland hydrology must be present,
	<u>100</u>	= Total Cove	er	unless disturbed or problematic.
Woody Vine Stratum (Plot Size:)				
1				
2				
		= Total Cove	er	
% Bare Ground in Herb Stratum				Hydrophytic Vegetation Present? Yes 🛛 No 🗌
Remarks:				

SOIL										Sampling Point: 2w
Prof	ile Descri	iption: (Describe to	o the depth need	ded to docu	ument th	ne indicato	or or confirm the	absence of inc	licators.)	
D	Depth	Matrix				Redox F	eatures		_	
(incl	hes)	Color (moist)	%	Color (Mo	ist)	%	Type ¹	Loc ²	Texture	Remarks
<u>(</u>	0-14	2.5Y 6/2	80	<u>2.5Y 5/6</u>		20	<u>C</u>	M	CL	
_										
_										
_										
_										
_										
_										
_										
¹Тур	e: C= Cor	centration, D=Dep	oletion, RM=Red	luced Matri	x, CS=C	Covered or	r Coated Sand C	Grains. ² Locat	ion: PL=Por	e Lining, M=Matrix
Hyd	ric Soil In	dicators: (Applica	ble to all LRRs,	unless oth	erwise n	noted.)			Indic	ators for Problematic Hydric Soils ³ :
	Histosol	(A1)			Sandy	Gleyed M	latrix (S4)			1 cm Muck (A9) (LRR I, J)
	Histic Ep	oipedon (A2)			Sandy	Redox (S	5)			Coast Prairie Redox (A16) (LRR F, G, H)
	Black Hi	stic (A3)			Strippe	ed Matrix (S6)			Dark Surface (S7) (LRR G)
	Hydroge	en Sulfide (A4)			Loamy	Mucky Mi	ineral (F1)			High Plains Depressions (F16)
	Stratified	d Layers (A5) (LRR	R F)		Loamy	Gleyed M	1atrix (F2)			(LRR H outside of MLRA 72 & 73)
	1 cm Mu	ıck (A9) (LRR F, G	i, H)	\boxtimes	Deplet	ed Matrix	(F3)			Reduced Vertic (F18)
	Deplete	d Below Dark Surfa	ace (A11)		Redox	Dark Surf	face (F6)			Red Parent Material (TF2)
	Thick Da	ark Surface (A12)			Deplet	ed Dark S	urface (F7)			Very Shallow Dark Surface (TF 12)
	Sandy N	lucky Mineral (S1)			Redox	Depressio	ons (F8)			Other (Explain in Remarks)
	2.5 CM	Mucky Peat or Pea	at (S2)(LRR G, F	H) 🗆	High P	lains Depr	ressions (F16)			cators of hydrophytic vegetation and wetland plogy must be present, unless disturbed or
	5 cm Mu	icky Peat or Peat (S3) (LRR F)		(MLR	A 72 & 73	B of LRR H)			ematic.
Rest	trictive La	ayer (if present):								
Туре										
Dept	th (Inches):							Hydr	ric Soils Present? Yes 🛛 No 🗌
Rem	narks:									
HYE		Υ								

Wetl	and Hydrology Indicat	ors:											
Prim	ary Indicators (minimun	n of one r	equired	; check	all tha	it apply)		Sec	ondary Indicators (2	or more	required	d)	
	Surface Water (A1)					Salt Crust (B11)			Surface Soil Crack	ks (B6)			
	High Water Table (A2)				Aquatic Invertebrates (B13)			Sparsely Vegetate	ed Conca	ive Surfa	ace (B8)	
	Saturation (A3)					Hydrogen Sulfide Odor (C1)			Drainage Patterns	(B10)			
	Water Marks (B1)					Dry Season Water Table (C2)			Oxidized Rhizospl	neres alc	ong Livin	g Roots ((C3)
	Sediment Deposits (E	2)				Oxidized Rhizospheres along Living Ro	oots (C3)		(where tilled)				
	Drift Deposits (B3)					(where not tilled)			Crayfish Burrows	(C8)			
	Algal Mat or Crust (B4	4)				Presence of Reduced Iron (C4)			Saturation Visible	on Aeria	l Imager	y (C9)	
	Iron Deposits (B5)					Thin Muck Surface (C7)		\boxtimes	Geomorphic Posit	ion (D2)			
	Inundation Visible on	Aerial Im	agery (l	B7)		Other (Explain in Remarks)		\boxtimes	FAC-Neutral Test	(D5)			
	Water-Stained Lea	ves (B9)						Frost-Heave Hum	mocks ([07) (LRF	R F)	
Field	Observations:												
Surfa	ace Water Present?	Yes		No	\boxtimes	Depth (inches):							
Wate	er Table Present?	Yes		No	\boxtimes	Depth (inches):							
	ration Present? Ides capillary fringe)	Yes		No	\boxtimes	Depth (inches):	Wet	and Hy	drology Present?	Yes		No	
Desc	ribe Recorded Data (s	tream ga	uge, mo	onitoring	g well,	aerial photos, previous inspections), if ava	ailable:						
Rem	narks:												

Project Site:	Black	River	Impou	Indment Site			Cit	y/County:		Penningt	on	Sampling	Date:	<u>8-23-</u>	2017
Applicant/Owner:	Hous	ton En	gineer	ing, Inc.						State:	MN	Sampling	Point:	<u>3u</u>	
Investigator(s):	Donn	na Jaco	b and	Mark D Aanens	son		Se	ction, Tow	vnship, F	Range:	<u>S35-T153</u>	N-45W			
Landform (hillslope,	terrac	e, etc.)	: <u>d</u> i	itch slope		Loca	al relief (concave,	convex,	none):	none		5	Slope (%): <u>5</u>
Subregion (LRR):	E			Lat: <u>48.02</u>	<u>5167</u>		Long	: <u>-96.39</u> 2	2869			Datum:	NAD19	83	
Soil Map Unit Name	: <u>v</u>	allers I	oam								NWI class	sification:	Uplan	d	
Are climatic / hydrold	ogic co	onditior	ns on t	he site typical fo	or this	time of year? Yes	🛛 N	lo 🗌	(If no, e	xplain in	Remarks.)				
Are Vegetation], S	Soil	⊠,	or Hydrology	⊠,	significantly disturbed	d?	Are "Norm	nal Circu	mstances	" present?	Yes	\boxtimes	No	
Are Vegetation], S	Soil	□,	or Hydrology	□,	naturally problematic	?	(If needed	l, explair	n any ans	wers in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Bomarka:								
Wetland Hydrology Present?	Yes	No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\bowtie	
Hydric Soil Present?	Yes	No	\boxtimes					
Hydrophytic Vegetation Present?	Yes	No	\boxtimes					

Remarks:

Tree Stratum (Plot Size:)	Absolute <u>% Cover</u>	Dominant Species?	Indicator Status	Dominance Test Worksheet:
1 2				Number of Dominant Species That Are OBL, FACW, or FAC: 0 (A)
3 4				Total Number of Dominant Species Across All Strata: <u>1</u> (B)
Sapling/Shrub Stratum (Plot Size:)		= Total Cover		Percent of Dominant Species That Are OBL, FACW, or FAC: <u>0</u> (A/B)
1				Prevalence Index worksheet:
2				Total % Cover of: Multiply by:
3				OBL species x1 =
4				FACW species x2 =
5				FAC species x3 =
		= Total Cover		FACU species x4 =
Herb Stratum (Plot Size: 2' x 6')				UPL species x5 =
1. Elymus repens	<u>70</u>	<u>x</u>	FACU	Column Totals: (A) (B)
2. Poa pratnesis	<u>10</u>		FACU	Prevalence Index = B/A =
3. Phleum pratense	<u>10</u>		FACU	Hydrophytic Vegetation Indicators:
4. <u>Cirsium arvense</u>	<u>5</u>		FACU	1 – Rapid Test for Hydrophytic Vegetation
5. Bromus inermis	<u>5</u>		<u>UPL</u>	2 - Dominance Test is >50%
6				3 – Prevalence Index is ≤3.0 ¹
7				4 - Morphological Adaptations ¹ (Provide supporting data in
8				Remarks or on a separate sheet)
9				Problematic Hydrophytic Vegetation ¹ (Explain)
10				¹ Indicators of hydric soil and wetland hydrology must be present,
	<u>100</u>	= Total Cover		unless disturbed or problematic.
Woody Vine Stratum (Plot Size:)				
1				
2				
		= Total Cover		
% Bare Ground in Herb Stratum				Hydrophytic Vegetation Present? Yes 🗌 No 🛛
Remarks:				

SOIL								Sampling F	Point: 3u		
Profile Desc	cription: (Describe to	the depth neede	ed to doc	ument the indica	tor or confirm the	absence of ind	licators.)				
Depth	Matrix			Redo	Features		_				
(inches)	Color (moist)	<u>%</u> C	Color (Mc	oist) %	Type ¹	Loc ²	Texture		Rema	rks	
<u>0-12</u>	<u>2.5Y 2/1</u>	<u>100</u>					Ŀ				
<u>12-18</u>	<u>2.5Y 5/3</u>	<u>100</u>					<u>FS</u>				
	oncentration, D=Depl				or Coated Sand G	irains. ² Locat		0.			
_	Indicators: (Applicat	ble to all LRRs, u		,				tors for Problema	-	Soils ³ :	
	ol (A1)			Sandy Gleyed				1 cm Muck (A9) (
	Epipedon (A2)			Sandy Redox (Coast Prairie Rec	. , .	LRR F, G	i, H)
	Histic (A3)			Stripped Matrix	. ,			Dark Surface (S7	, , , ,		
_	gen Sulfide (A4)	_`		Loamy Mucky				High Plains Depre			
	ed Layers (A5) (LRR			Loamy Gleyed			_	(LRR H outside		72 & 73)	
	Muck (A9) (LRR F, G,	-		Depleted Matri	. ,			Reduced Vertic (F	,		
_ ·	ed Below Dark Surfa	ce (A11)		Redox Dark Su	. ,			Red Parent Mater	. ,	TE 40)	
	Dark Surface (A12)			Depleted Dark	. ,			Very Shallow Dar		TF 12)	
_ '	Mucky Mineral (S1)			Redox Depres			□ ³ Indica	Other (Explain in ators of hydrophytic	,	n and wet	land
	/I Mucky Peat or Peat /lucky Peat or Peat (S			(MLRA 72 &	pressions (F16)		hydrol	ogy must be prese			
	Layer (if present):	53) (LKK F)		(IVILKA 72 &			proble	matic.			
Type:	Luyer (ii present).										
Depth (Inche								0.11.0	Mar		
Remarks:							Hydric	Soils Present?	Yes		0 🛛
Remarks.											
HYDROLC	drology Indicators:										
-	cators (minimum of or	ne required: chec	k all tha	t apply)			Second	ary Indicators (2 or	more real	uired)	
	ce Water (A1)			Salt Crust (B1	1)			urface Soil Cracks			
	Water Table (A2)			Aquatic Inverte	-			barsely Vegetated		urface (B	8)
_ 0	ation (A3)			Hydrogen Sulfi	. ,			rainage Patterns (E			~,
				i iyurogon dulli				amage i atterno (L	,		

Wetl	and Hydrology Indica	itors:											
Prim	ary Indicators (minimur	m of one r	equired	l; check	all tha	t apply)		Sec	ondary Indicators (2	or more	required	d)	
	Surface Water (A1)					Salt Crust (B11)			Surface Soil Crac	ks (B6)			
	High Water Table (A2	2)				Aquatic Invertebrates (B13)			Sparsely Vegetate	ed Conca	ave Surfa	ace (B8)	
	Saturation (A3)					Hydrogen Sulfide Odor (C1)			Drainage Patterns	s (B10)			
	Water Marks (B1)					Dry Season Water Table (C2)			Oxidized Rhizosp	heres ald	ong Livin	g Roots	(C3)
	Sediment Deposits (B	B2)				Oxidized Rhizospheres along Living Ro	oots (C3)		(where tilled)				
	Drift Deposits (B3)					(where not tilled)			Crayfish Burrows	(C8)			
	Algal Mat or Crust (B	4)				Presence of Reduced Iron (C4)			Saturation Visible	on Aeria	I Imager	ту (С9)	
	Iron Deposits (B5)					Thin Muck Surface (C7)			Geomorphic Posit	tion (D2)			
	Inundation Visible on	Aerial Im	agery (B7)		Other (Explain in Remarks)			FAC-Neutral Test	(D5)			
	Water-Stained Lea	aves (B9)						Frost-Heave Hum	mocks (I	07) (LRF	R F)	
Field	l Observations:												
Surfa	ace Water Present?	Yes		No	\boxtimes	Depth (inches):							
Wate	er Table Present?	Yes		No	\boxtimes	Depth (inches):							
	ration Present? udes capillary fringe)	Yes		No	\boxtimes	Depth (inches):	Wetla	nd Hy	drology Present?	Yes		No	
Desc	cribe Recorded Data (s	stream ga	uge, mo	onitoring	g well,	aerial photos, previous inspections), if ava	ailable:						
Rem	narks:												

Project Site:	Blac	k River	Impou	indment Site			City/County: Pennington				on	Sampling	Date:	<u>8-23-</u>	2017	
Applicant/Owner:	Hou	ston En	gineer	ing, Inc.							State:	MN	Sampling	Point:	<u>3w</u>	
Investigator(s):	Don	na Jaco	b and	Mark D Aan	nenson			Se	ction, To	ownship, F	Range:	<u>S35-T153</u>	N-45W			
Landform (hillslope,	terrad	ce, etc.)): <u>di</u>	itch bottom			Local	relief (concave	e, convex,	none):	<u>concave</u>		5	Slope (%): <u>1</u>
Subregion (LRR):	F	-		Lat: <u>48</u>	8.025215			Long	: <u>-96.3</u>	92919			Datum:	NAD19	<u>83</u>	
Soil Map Unit Name	: 1	/allers I	<u>oam</u>									NWI class	sification:	Uplan	d	
Are climatic / hydrold	ogic c	ondition	ns on t	he site typic	al for this t	time of year?	Yes	M N	lo 🛛	(lf no, e	xplain in	Remarks.)				
Are Vegetation], :	Soil	⊠,	or Hydrolog	gy 🖾,	significantly di	isturbed	?	Are "No	rmal Circu	imstances	s" present?	Yes	\boxtimes	No	
Are Vegetation], :	Soil	□,	or Hydrolog	gy □,	naturally prob	lematic?		(If need	ed, explaii	n any ans	wers in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Pomarks:								
Wetland Hydrology Present?	Yes	\boxtimes	No	Is the Sampling Area within a Wetland?	Yes	\boxtimes	No	
Hydric Soil Present?	Yes	\boxtimes	No					
Hydrophytic Vegetation Present?	Yes	\boxtimes	No					

Remarks:

Tree Stratum (Plot Size:)	Absolute <u>% Cover</u>	Dominant Species?	Indicator <u>Status</u>	Dominance Test Worksheet:
1 2				Number of Dominant Species That Are OBL, FACW, or FAC: 2 (A)
3 4				Total Number of Dominant Species Across All Strata: <u>3</u> (B)
Sapling/Shrub Stratum (Plot Size:)		= Total Cover	r	Percent of Dominant Species That Are OBL, FACW, or FAC: <u>67</u> (A/B)
1				Prevalence Index worksheet:
2				Total % Cover of: Multiply by:
3				OBL species x1 =
4				FACW species x2 =
5				FAC species x3 =
		= Total Cover	·	FACU species x4 =
Herb Stratum (Plot Size: 2' x 6')				UPL species x5 =
1. Phalaris arundinacea	<u>30</u>	x	FACW	Column Totals: (A) (B)
2. Beckmannia syzigachne	<u>30</u>	x	<u>OBL</u>	Prevalence Index = B/A =
3. Elymus repens	<u>20</u>	x	FACU	Hydrophytic Vegetation Indicators:
4. Rumex crispus	<u>5</u>		FAC	1 – Rapid Test for Hydrophytic Vegetation
5. Phleum pratense	<u>5</u>		FACU	x2 - Dominance Test is >50%
6				3 – Prevalence Index is ≤3.01
7 8				4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
9				Problematic Hydrophytic Vegetation ¹ (Explain)
10				¹ Indicators of hydric soil and wetland hydrology must be present,
	<u>90</u>	= Total Cover	r	unless disturbed or problematic.
Woody Vine Stratum (Plot Size:)				
1				
2				
		= Total Cover	r	
% Bare Ground in Herb Stratum 10				Hydrophytic Vegetation Present? Yes 🛛 No 🗌
Remarks:				

s	ο	IL	

Sampling Point: 3w

Profile Des	cription: (Describe	e to the de	pth need	ded to docu	ument the indicator	or confirm the a	absence o	f indicators.)					
Depth	Matri	x			Redox Fe	atures							
(inches)	Color (moist)	%		Color (Mo	ist) %	Type ¹	Loc ²	Textu	ire	Ren	narks		
<u>0-4</u>	<u>2.5Y 2/1</u>	<u>100</u>	<u>)</u>					_ <u>l</u>	=				
<u>4-14</u>	<u>2.5Y 5/2</u>	<u>60</u>		<u>2.5Y 8/2</u>	<u>30</u>	<u>D</u>	M	<u>S</u>	<u> </u>				
			_	<u>2.5Y 5/6</u>	<u>10</u>	<u>C</u>	M						
			_										
			_										
			_										
			_										
			_										
¹ Type: C= C	Concentration, D=D	epletion, F	RM=Red	luced Matri	x, CS=Covered or C	Coated Sand G	rains. ² L	ocation: PL=P	ore Lining, M=Matri	x			
	Indicators: (Appli	cable to al	l LRRs,	unless oth	-			Inc	dicators for Proble	matic Hyd	ric Soils ³ :		
	sol (A1)				Sandy Gleyed Mat								
	Epipedon (A2)				Sandy Redox (S5)					Redox (A16)(LRR F,	G , H)	
Black	Histic (A3)				Stripped Matrix (S	6)							
Hydro	gen Sulfide (A4)				Loamy Mucky Min	eral (F1)			High Plains De	pressions ((F16)		
Stratif	fied Layers (A5) (LI	RR F)			Loamy Gleyed Ma	trix (F2)			(LRR H outs	ide of MLF	RA 72 & 73	6)	
□ 1 cm	Muck (A9) (LRR F,	G, H)		\boxtimes	Depleted Matrix (F	3)			Reduced Vertic	c (F18)			
Deple Deple	ted Below Dark Su	Irface (A11	1)		Redox Dark Surface	ce (F6)				•			
_	Dark Surface (A12	-			Depleted Dark Sur						· /		
	y Mucky Mineral (S				Redox Depression			310	· · ·		-	atland	
	M Mucky Peat or P			H) 🗆	High Plains Depre				dicators of hydroph drology must be pre				
	Mucky Peat or Pea		RF)		(MLRA 72 & 73 d	of LRR H)		pro	oblematic.				
	Layer (if present)	:											
Type:													
Depth (Inch	es):							Hy	dric Soils Present	? Yes	\boxtimes	No	
Remarks:													
HYDROLO													
-	drology Indicator							0					
	icators (minimum o	of one requ	lirea; che						ondary Indicators (2		equirea)		
	ice Water (A1)				Salt Crust (B11)				Surface Soil Crac	. ,			
	Water Table (A2)				Aquatic Invertebra				Sparsely Vegetate		e Surface (I	B8)	
	ation (A3)				Hydrogen Sulfide	. ,			Drainage Patterns	. ,			
	r Marks (B1)				Dry Season Water				Oxidized Rhizosp	heres along	g Living Ro	ots (C	:3)
_	ment Deposits (B2)				Oxidized Rhizosph	•	ing Roots		(where tilled)				
	Deposits (B3)			_	(where not tilled)				Crayfish Burrows				
	Mat or Crust (B4)				Presence of Redu	. ,			Saturation Visible		magery (CS	9)	
	Deposits (B5)				Thin Muck Surface			\boxtimes	Geomorphic Posit				
	lation Visible on Ae	-	ery (B7)		Other (Explain in F	Remarks)		\boxtimes	FAC-Neutral Test	(D5)			
	er-Stained Leave	es (B9)							Frost-Heave Hum	mocks (D7) (LRR F)		
Field Obse	rvations:												
Surface Wa	ter Present?	Yes [lo 🛛	Depth (inches								
Water Table		Yes [lo 🛛	Depth (inches):							
Saturation F	Present? pillary fringe)	Yes [lo 🛛	Depth (inches):		Wetland Hyd	drology Present?	Yes	\boxtimes	No	
		am gauge	. monito	ring well a	erial photos, previo	us inspections)	, if availat	ole:					
		32490	,		provide		,						
Domorke													
Remarks:													

Project Site:	Black I	River Impo	undment Site			City/	County:	Penningt	on	Sampling Date:		<u>8-23-2017</u>	
Applicant/Owner:	Housto	on Enginee	ering, Inc.					State:	MN	Sampling	Point:	<u>4u</u>	
Investigator(s):	Donna	Jacob an	d Mark D Aanens	on		Sect	ion, Township, I	Range:	<u>S35-T153</u>	N-R45W			
Landform (hillslope,	terrace,	, etc.):	ditch slope		Loca	al relief (co	oncave, convex,	none):	none		S	Slope (%): <u>5</u>
Subregion (LRR):	E		Lat: <u>48.03</u>	3301		Long:	48.025167			Datum:	NAD19	<u>83</u>	
Soil Map Unit Name	: <u>Gri</u>	mstad find	sandy loam						NWI class	sification:	Uplan	<u>d</u>	
Are climatic / hydrold	ogic cor	nditions on	the site typical for	or this	time of year? Yes	🛛 No	🔲 (lf no, e	explain in	Remarks.)				
Are Vegetation], So	oil ⊠,	or Hydrology	Ø,	significantly disturbed	iA ?t	re "Normal Circu	umstances	s" present?	Yes	\boxtimes	No	
Are Vegetation], So	oil □,	or Hydrology	□,	naturally problematic	? (If	f needed, explai	n any ans	wers in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	No							
Hydric Soil Present?	Yes Yes	No	_			_		_	
Wetland Hydrology Present?	res	No		Is the Sampling Area within a Wetland?	Yes		No		

Remarks:

1.	
Sapling/Shrub Stratum (Plot Size:) = Total Cover Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B)	
1 Prevalence Index worksheet:	
2 Total % Cover of: Multiply by:	
3 OBL species x1 =	
4 FACW species x2 =	
5 FAC species x3 =	
= Total Cover FACU species x4 =	
Herb Stratum (Plot Size: 3' x 6') UPL species x5 =	
Phalaris arundinacea 40 x FACW Column Totals: (A) (B)	
Agrostis stolonifera 40 x FACW Prevalence Index = B/A =	
3. <u>Rumex crispus</u> <u>10</u> <u>FAC</u> Hydrophytic Vegetation Indicators:	
4. <u>Typha sp.</u> 10 OBL <u>x</u> 1 – Rapid Test for Hydrophytic Vegetation	
5 2 - Dominance Test is >50%	
6 3 – Prevalence Index is ≤3.01	
7 4 - Morphological Adaptations ¹ (Provide supporting d	nta in
8 Remarks or on a separate sheet)	
9 Problematic Hydrophytic Vegetation ¹ (Explain)	
10 ¹ Indicators of hydric soil and wetland hydrology must be present.	
100 = Total Cover unless disturbed or problematic.	
Woody Vine Stratum (Plot Size:)	
1	
2	
= Total Cover	
% Bare Ground in Herb Stratum Yes 🛛 No	
Remarks:	

Profil	e Description: (Descri	be to the depth ne	eeded to doc	ument the indicato	r or confirm the	absence of ind	cators.)				
De	epth Ma	rix		Redox F	eatures						
(inche	es) Color (moist	%	Color (Mo	oist) %	Type ¹	Loc ²	Texture		Remarks		
0-	<u>14</u> <u>2.5Y 2/1</u>	100					SL				
1	<u>4+</u> <u>2.5Y 6/4</u>	<u>100</u>					<u>s</u>				
_											
¹ Type	: C= Concentration, D=	Depletion, RM=R	educed Mati	rix, CS=Covered or	Coated Sand G	rains. ² Locat	on: PL=Pore Lining	g, M=Matrix			
Hydri	c Soil Indicators: (App	licable to all LRR	s, unless oth	nerwise noted.)			Indicators f	or Problemati	c Hydric So	ls ³ :	
	Histosol (A1)			Sandy Gleyed M	atrix (S4)		□ 1 cm	Muck (A9) (LF	RR I, J)		
	Histic Epipedon (A2)			Sandy Redox (St	5)		Coas	st Prairie Redo	x (A16) (LRR	F, G, H)
	Black Histic (A3)			Stripped Matrix (S6)		Dark	Surface (S7) (LRR G)		
	Hydrogen Sulfide (A4)			Loamy Mucky Mi	neral (F1)		🗌 High	Plains Depres	sions (F16)		
	Stratified Layers (A5) (LRR F)		Loamy Gleyed M	atrix (F2)		(LF	RR H outside o	of MLRA 72	& 73)	
	1 cm Muck (A9) (LRR	- , G , H)		Depleted Matrix ((F3)		🗌 Redu	uced Vertic (F1	8)		
	Depleted Below Dark S	Surface (A11)		Redox Dark Surf	ace (F6)		Red	Parent Materia	ll (TF2)		
	Thick Dark Surface (A	2)		Depleted Dark Si	urface (F7)		☐ Very	Shallow Dark	Surface (TF	12)	
	Sandy Mucky Mineral (S1)		Redox Depression	ons (F8)		☐ Othe	r (Explain in Re	emarks)		
	2.5 CM Mucky Peat or	Peat (S2)(LRR G	6, H) 🛛	High Plains Depr	essions (F16)			of hydrophytic v Just be present			d
	5 cm Mucky Peat or Pe	at (S3) (LRR F)		(MLRA 72 & 73	of LRR H)		problematic.		, uniess uisit	il beu oi	
Restr	ictive Layer (if presen	t):									
Type:											
Depth	(Inches):						Hydric Soils	s Present?	Yes 🛛	No	\boxtimes
Rema	rks:										
нур	ROLOGY										
	nd Hydrology Indicate	ors.									
	ry Indicators (minimum		check all tha	t apply)			Secondary In	dicators (2 or n	nore required)	
	Surface Water (A1)	or one required,		Salt Crust (B11)				Soil Cracks (E	-	/	
	High Water Table (A2)			Aquatic Invertebr	atos (B13)				,	co (B8)	
				Aqualic invertebl	ales (D15)						
				Hydrogen Sulfide	Odor(C1)		Drainag	e Patterne (P1	0)		
	Saturation (A3) Water Marks (B1)			Hydrogen Sulfide Dry Season Wate			-	e Patterns (B1 d Rhizosphere		n Roots ((3)

(where	tilled)
(unou)

- Crayfish Burrows (C8)
- Saturation Visible on Aerial Imagery (C9)
- Geomorphic Position (D2)
- \boxtimes FAC-Neutral Test (D5)

Frost-Heave Hummocks (D7) (LRR F)

Yes

No

 \boxtimes

Oxidized Rhizospheres along Living Roots (C3)

(where not tilled)

Thin Muck Surface (C7)

Depth (inches):

Other (Explain in Remarks)

Presence of Reduced Iron (C4)

Water Table Present? \boxtimes Yes No Depth (inches): Saturation Present? Yes No \boxtimes Depth (inches): Wetland Hydrology Present? (includes capillary fringe)

 \boxtimes

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:

 Sediment Deposits (B2)

Algal Mat or Crust (B4)

Inundation Visible on Aerial Imagery (B7)

Yes

No

Water-Stained Leaves (B9)

Drift Deposits (B3)

Iron Deposits (B5)

Field Observations: Surface Water Present?

WETLAND DETERMINATION DATA FORM – Great Plains	Region
--	--------

Project Site:	Black Rive	er Impo	undment Site					City/Co	ounty	<i>'</i> :	Penningt	on	Sampling	Date:	<u>8-23-</u>	2017
Applicant/Owner:	Houston E	Inginee	ring, Inc.								State:	MN	Sampling	Point:	<u>5u</u>	
Investigator(s):	Donna Ja	cob and	Mark D Aanens	on			:	Sectior	n, To	wnship, F	Range:	<u>S35-T153</u>	N-R45W			
Landform (hillslope,	terrace, et	c.): <u>c</u>	<u>litch slope</u>			Loc	al relie	ef (cond	cave,	, convex,	none):	none		S	lope ('	%): <u>5</u>
Subregion (LRR):	E		Lat:				Lo	ng: _		_			Datum:	NAD198	<u>33</u>	
Soil Map Unit Name	: <u>Roliss</u>	loam										NWI class	sification:	Uplan	<u>t</u>	
Are climatic / hydrold	ogic conditi	ons on	the site typical fo	or this	time of year?	Yes	\boxtimes	No		(If no, e	xplain in	Remarks.)				
Are Vegetation], Soil	X,	or Hydrology	Ø,	significantly d	isturbe	d?	Are	"Nori	mal Circu	imstances	s" present?	Yes	\boxtimes	No	
Are Vegetation], Soil	□,	or Hydrology	□,	naturally prob	lematio	?	(lf ne	eede	d, explair	n any ans	wers in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Pomarka:				· · · · ·				
Wetland Hydrology Present?	Yes	No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes	
Hydric Soil Present?	Yes	No	\boxtimes					
Hydrophytic Vegetation Present?	Yes	No	\boxtimes					7

Remarks:

Tree Stratum (Plot Size:)	Absolute <u>% Cover</u>	Dominant Species?	Indicator <u>Status</u>	Dominance Test Worksheet:
1 2				Number of Dominant Species That Are OBL, FACW, or FAC: $\underline{0}$ (A)
3 4				Total Number of Dominant Species Across All Strata: 2 (B)
Sapling/Shrub Stratum (Plot Size:)		= Total Cove	ſ	Percent of Dominant Species That Are OBL, FACW, or FAC: 0 (A/B)
1				Prevalence Index worksheet:
2				Total % Cover of: Multiply by:
3				OBL species x1 =
4				FACW species x2 =
5				FAC species x3 =
		= Total Cove	r	FACU species x4 =
Herb Stratum (Plot Size: 3' x 6')				UPL species x5 =
1. Bromus inermis	<u>65</u>	<u>x</u>	UPL	Column Totals: (A) (B)
2. <u>Crisium arvense</u>	<u>20</u>	<u>x</u>	<u>FACU</u>	Prevalence Index = B/A =
3. Taraxacum officinale	<u>5</u>		FACU	Hydrophytic Vegetation Indicators:
4. Sonchus arvensis	<u>5</u>		FAC	1 – Rapid Test for Hydrophytic Vegetation
5. Asclepias syriaca	<u>5</u>		UPL	2 - Dominance Test is >50%
6				3 – Prevalence Index is ≤3.0 ¹
7				
8				4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
9				Problematic Hydrophytic Vegetation ¹ (Explain)
10				¹ Indicators of hydric soil and wetland hydrology must be present,
	<u>100</u>	= Total Cove	r	unless disturbed or problematic.
Woody Vine Stratum (Plot Size:)				
1				
2				
		= Total Cove	r	
% Bare Ground in Herb Stratum				Hydrophytic Vegetation Present? Yes 🗌 No 🛛
Remarks:				

SOIL

Sampling Point: 5u

Profi	e Description: (Describ	be to the	depth n	eeded	to doc	ument the indi	cator or	confirm the	absence	of indicat	ors.)	· •
De	epth Mat	rix				Rec	lox Feat	tures				
(inch	es) Color (moist))	%	Co	lor (Mo	ist) %		Type ¹	Loc ²		Textur	e Remarks
<u>(</u>	<u>-5</u> <u>2.5Y 2/1</u>		100								SiL	
5	<u>-13</u> <u>2.5Y 6/3</u>		<u>99</u>	2	.5Y 5/6	<u>i</u> <u>1</u>		<u>C</u>	M		SiL	
		_					_			_		
		_								_		
_		_					_			_		
_		_					_			_		
_		_					_			_		
_		_										
1Туре	: C= Concentration, D=	Depletio	n, RM=F	Reduce	ed Matr	ix, CS=Covere	ed or Co	ated Sand G	rains. ² L	ocation:	PL=Pc	ore Lining, M=Matrix
Hydri	c Soil Indicators: (App	licable t	o all LRF	Rs, unl	ess oth	erwise noted.))				Indi	cators for Problematic Hydric Soils ³ :
	Histosol (A1)					Sandy Gleye	ed Matriz	x (S4)				1 cm Muck (A9) (LRR I, J)
	Histic Epipedon (A2)					Sandy Redo	x (S5)					Coast Prairie Redox (A16) (LRR F, G, H)
	Black Histic (A3)					Stripped Mat	rix (S6)					Dark Surface (S7) (LRR G)
	Hydrogen Sulfide (A4)					Loamy Muck	y Miner	al (F1)				High Plains Depressions (F16)
	Stratified Layers (A5) (I	LRR F)				Loamy Gleye	ed Matri	x (F2)				(LRR H outside of MLRA 72 & 73)
	1 cm Muck (A9) (LRR I	F, G, H)				Depleted Ma	trix (F3))				Reduced Vertic (F18)
	Depleted Below Dark S	Surface (A11)			Redox Dark	Surface	e (F6)				Red Parent Material (TF2)
	Thick Dark Surface (A1	2)				Depleted Da	rk Surfa	ice (F7)				Very Shallow Dark Surface (TF 12)
	Sandy Mucky Mineral (S1)				Redox Depre		. ,			31.0.0	Other (Explain in Remarks)
	2.5 CM Mucky Peat or			G, H)		High Plains I	•	. ,				icators of hydrophytic vegetation and wetland rology must be present, unless disturbed or
	5 cm Mucky Peat or Pe	. ,	(LRR F)			(MLRA 72	& 73 of	LRR H)			prot	plematic.
	ictive Layer (if presen	t):										
Type:												
	Depth (Inches): Hydric Soils Present? Yes D No											
Rema	irks:											
	ROLOGY											
Wetla	and Hydrology Indicate	ors:										
Prima	ry Indicators (minimum	of one r	equired;	check							Seco	ndary Indicators (2 or more required)
	Surface Water (A1)					Salt Crust (B						Surface Soil Cracks (B6)
	High Water Table (A2)					Aquatic Inve		. ,				Sparsely Vegetated Concave Surface (B8)
	Saturation (A3)					Hydrogen Su	ulfide Oo	dor (C1)				Drainage Patterns (B10)
	Water Marks (B1)					Dry Season						Oxidized Rhizospheres along Living Roots (C3)
	Sediment Deposits (B2	2)						res along Liv	ing Roots	s (C3)		(where tilled)
	Drift Deposits (B3)				_	(where not t						Crayfish Burrows (C8)
	Algal Mat or Crust (B4))				Presence of						Saturation Visible on Aerial Imagery (C9)
	Iron Deposits (B5)					Thin Muck S						Geomorphic Position (D2)
	Inundation Visible on A			7)		Other (Expla	in in Re	marks)				FAC-Neutral Test (D5)
	Water-Stained Leav	es (B9))									Frost-Heave Hummocks (D7) (LRR F)
Field	Observations:											
	ce Water Present?	Yes		No	\boxtimes	Depth (i	,					
	Table Present?	Yes		No	\boxtimes	Depth (i	nches):					
(inclu	ation Present? des capillary fringe)	Yes		No		Depth (i					d Hyd	rology Present? Yes 🗌 No 🛛
Desci	ibe Recorded Data (str	ream gau	uge, mor	nitoring	g well, a	aerial photos, p	orevious	inspections)	, if availa	ble:		
Rem	arks:											

Project Site:	Black R	iver Impo	undment Si	ite		City/	/County:	Penningt	on	Sampling	Date:	<u>8-23-</u>	2017
Applicant/Owner:	Houstor	n Enginee	ring, Inc.					State:	MN	Sampling	Point:	<u>5w</u>	
Investigator(s):	Donna .	Jacob and	Mark D Aa	anenson		Sect	tion, Township, I	Range:	<u>S35-T153</u>	N-R45W			
Landform (hillslope,	terrace,	etc.): <u>d</u>	litch bottom	<u>1</u>	Loc	cal relief (co	oncave, convex,	none):	<u>concave</u>		S	Slope (%): <u>1</u>
Subregion (LRR):	E		Lat: <u>4</u>	8.034164		Long:	<u>-96.393003</u>		I	Datum:	NAD19	<u>83</u>	
Soil Map Unit Name	: <u>Roli</u>	ss loam							NWI class	sification:	Uplan	<u>d</u>	
Are climatic / hydrold	ogic cond	ditions on	the site typi	ical for this	time of year? Yes	🛛 No) 🗌 (lf no, e	explain in	Remarks.)				
Are Vegetation], Soi	I ⊠,	or Hydrolo	ogy 🖾,	significantly disturbe	d? A	re "Normal Circu	umstances	s" present?	Yes	\boxtimes	No	
Are Vegetation], Soi	I □,	or Hydrold	ogy □,	naturally problemati	c? (l'	f needed, explai	n any ans	wers in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydric Soil Present?	Yes	\boxtimes	No					
Wetland Hydrology Present?	Yes	\boxtimes	No	Is the Sampling Area within a Wetland?	Yes	\boxtimes	No	
Remarks:								

Remarks:

1.
A.Image: Constraint of the constraint of
Sapling/Shrub Stratum (Plot Size:)Image: Constraint of the constraint o
2Total % Cover of:Multiply by:3OBL species $x1 =$ 4FACW species $x2 =$ 5FAC species $x3 =$ FAC species $x3 =$ FAC species $x3 =$ FAC species $x3 =$ Herb Stratum (Plot Size: $3' x 6'$)1Phataris arundinacea60 x FACWColumn Totals:(B)2.Rumex crispus20 x FACPrevalence Index = B/A =
3OBL species $x1 =$ 4FACW species $x2 =$ 5FAC species $x3 =$ FAC species $x3 =$ Herb Stratum (Plot Size: 3' x 6')1.Phalaris arundinacea60xFACWColumn Totals:2.Rumex crispus20xFACPrevalence Index = B/A =3.Typha sp.20xOBLHydrophytic Vegetation Indicators:41 - Rapid Test for Hydrophytic Vegetation51 - Rapid Test is >50%63 - Prevalence Index is $\leq 3.0^1$ 74 - Morphological Adaptations' (Provide supporting data in Remarks or on a separate sheet)
4
5
Herb Stratum (Plot Size: $3' \times 6'$)FACU species $x4 =$ 1. Phalaris arundinacea 60 x FACWColumn Totals:(A)(B)2. Rumex crispus 20 x FACPrevalence Index = B/A =(B)3. Typha sp. 20 x OBLHydrophytic Vegetation Indicators:4
Herb Stratum (Plot Size: $3' \times 6'$)UPL species $x5 =$ 1. Phalaris arundinacea60 x FACWColumn Totals:(A)(B)2. Rumex crispus20 x FACPrevalence Index = B/A =(B)3. Typha sp.20 x OBLHydrophytic Vegetation Indicators:4
1.Phalaris arundinacea 60 x FACWColumn Totals:(A)(B)2.Rumex crispus 20 x FACPrevalence Index = B/A =3.Typha sp. 20 x OBLHydrophytic Vegetation Indicators:4
2.Rumex crispus20xFACPrevalence Index = $B/A = _$ 3.Typha sp.20xOBLHydrophytic Vegetation Indicators:4
3.Typha sp. $\underline{20}$ \underline{x} \underline{OBL} Hydrophytic Vegetation Indicators:41 - Rapid Test for Hydrophytic Vegetation5 \underline{x} 2 - Dominance Test is >50%6 $\underline{3}$ - Prevalence Index is $\leq 3.0^1$ 7 $\underline{4}$ - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
4. $_$ $_$ $_$ 1 - Rapid Test for Hydrophytic Vegetation5. $_$ $_$ $_$ 2 - Dominance Test is >50%6. $_$ $_$ $_$ 3 - Prevalence Index is $\leq 3.0^1$ 7. $_$ $_$ $_$ 4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
5.
6.
7. S = Prevalence index is 25.0° 8. 4 - Morphological Adaptations1 (Provide supporting data in Remarks or on a separate sheet)
8 4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
8 Remarks or on a separate sheet)
9 Problematic Hydrophytic Vegetation ¹ (Explain)
10 ¹ Indicators of hydric soil and wetland hydrology must be present,
100 = Total Cover unless disturbed or problematic.
Woody Vine Stratum (Plot Size:)
1
2
= Total Cover
% Bare Ground in Herb Stratum Yes 🛛 No 🗌
Remarks:

rofile Desc	ription: (Describe to	the depth ne	eded to doc	ument the indicator	r or confirm the a	absence of inc	licators.)	Sampling				
Depth	Matrix			Redox F			,					
inches)	Color (moist)	%	Color (Mo	ist) %	Type ¹	Loc ²	- Texture		Rem	arks		
<u>0-8</u>	10YR 2/1	100					CL					
<u>8-15</u>	<u>2.5Y 7/2</u>	<u>80</u>	<u>2.5Y 5/6</u>	<u>20</u>	<u>C</u>	<u>M</u>	<u>CL</u>					
71	oncentration, D=Deple	,			Coated Sand G	rains. ² Locat	ion: PL=Por	e Lining, M=Matrix				
•	Indicators: (Applicab	le to all LRRs	·	,				ators for Problem	-		3	
Histoso	. ,			Sandy Gleyed Ma	. ,			1 cm Muck (A9)	,			
	Epipedon (A2)			Sandy Redox (S				Coast Prairie Re		-	⁼, G, H	
Black H	Histic (A3)			Stripped Matrix (S6)			Dark Surface (S	7) (LRR G)		
] Hydrog	gen Sulfide (A4)			Loamy Mucky Mi	neral (F1)			High Plains Dep	ressions (I	F16)		
Stratifi	ed Layers (A5) (LRR	F)		Loamy Gleyed M	atrix (F2)			(LRR H outsid	le of MLR	A 72 &	73)	
] 1 cm N	luck (A9) (LRR F, G,	H)	\boxtimes	Depleted Matrix (F3)		Reduced Vertic (F18)					
Deplet	ed Below Dark Surfac	ce (A11)		Redox Dark Surfa	ace (F6)			Red Parent Mate	erial (TF2)			
] Thick [Dark Surface (A12)			Depleted Dark Su	urface (F7)			Very Shallow Da	irk Surface	e (TF 12)	
] Sandy	Mucky Mineral (S1)			Redox Depressio	ons (F8)			Other (Explain ir	Remarks)		
	1 Mucky Peat or Peat /lucky Peat or Peat (S		H) 🗆	High Plains Depr (MLRA 72 & 73	. ,		hydro	cators of hydrophyt blogy must be pres ematic.				
	Layer (if present):	,,,,,			,		proor	cinatio.				
ype:												
) Depth (Inche	es):						Hydr	ic Soils Present?	Yes	\boxtimes	No	
	,						Ilyu	ic oolis i resenti	163		NU	

weu	and Hydrology Indica	lors:												
Prima	ary Indicators (minimun	n of one r	equired	; check	all tha	t apply)		Sec	ondary Indicators (2	or more	required)		
	Surface Water (A1)					Salt Crust (B11)			Surface Soil Crack	ks (B6)				
	High Water Table (A2	2)				Aquatic Invertebrates (B13)			Sparsely Vegetate	ed Conca	ive Surfa	ce (B8)		
	Saturation (A3)					Hydrogen Sulfide Odor (C1)			Drainage Patterns	(B10)				
	Water Marks (B1)					Dry Season Water Table (C2)			Oxidized Rhizosph	neres alc	ong Living	g Roots (/	C3)	
	Sediment Deposits (E	32)				Oxidized Rhizospheres along Living Roo	ots (C3)		(where tilled)					
	Drift Deposits (B3)					(where not tilled)			Crayfish Burrows (C8)					
	Algal Mat or Crust (B4	4)				Presence of Reduced Iron (C4)			Saturation Visible	on Aeria	I Imager	y (C9)		
	Iron Deposits (B5)					Thin Muck Surface (C7)		\boxtimes	Geomorphic Positi	ion (D2)				
	Inundation Visible on	Aerial Im	agery (I	B7)		Other (Explain in Remarks)		\boxtimes	FAC-Neutral Test	(D5)				
	□ Water-Stained Leaves (B9)								Frost-Heave Hum	mocks ([07) (LRR	(F)		
Field	Observations:													
Surfa	ce Water Present?	Yes		No	\boxtimes	Depth (inches):								
Wate	r Table Present?	Yes		No	\boxtimes	Depth (inches):								
	ation Present? des capillary fringe)	Yes		No	\boxtimes	Depth (inches):	Wetla	nd Hy	drology Present?	Yes	\boxtimes	No		
Desc	ribe Recorded Data (s	tream gau	uge, mo	nitoring	g well, a	aerial photos, previous inspections), if avai	ilable:							
Rem	arks:													

Project Site:	Black	River Impo	undment Site			City/County: Pennin				<u>n</u>	Sampling	Date:	<u>8-23-</u>	2017
Applicant/Owner:	Houst	on Enginee	ring, Inc.					Sta	ate: I	MN	Sampling	Point:	<u>6u</u>	
Investigator(s):	Donna	Jacob and	Mark D Aanen	son		Sec	ction, Towr	nship, Ran	ige:	S25-T153	N-R45W			
Landform (hillslope,	terrace	, etc.): <u>c</u>	titch slope		Loc	al relief (concave, c	onvex, noi	ne): <u>i</u>	none		S	lope (%): <u>5</u>
Subregion (LRR):	E		Lat: <u>48.03</u>	<u>6936</u>		Long:	-96.392	788		I	Datum:	NAD19	<u>83</u>	
Soil Map Unit Name	: <u>Str</u>	athcona fir	e sandy loam							NWI class	sification:	Uplan	<u>d</u>	
Are climatic / hydrold	ogic cor	nditions on	the site typical f	or this	time of year? Yes	N N	o □ ((If no, expl	ain in F	Remarks.)				
Are Vegetation], So	oil ⊠,	or Hydrology	X,	significantly disturbe	:d? /	Are "Norma	al Circums	stances'	' present?	Yes	\boxtimes	No	
Are Vegetation], So	oil □,	or Hydrology	□,	naturally problemation	c? ((If needed,	explain ar	ny ansv	vers in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydric Soil Present?	Yes Yes	No	\boxtimes			_		_
Wetland Hydrology Present?	res	No		Is the Sampling Area within a Wetland?	Yes		No	

Remarks:

Tree Stratum (Plot Size:)	Absolute <u>% Cover</u>	Dominant Species?	Indicator <u>Status</u>	Dominance Test Worksheet:
1 2				Number of Dominant Species That Are OBL, FACW, or FAC: (A)
3 4				Total Number of Dominant Species Across All Strata: (B)
Sapling/Shrub Stratum (Plot Size:)		= Total Cover		Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B)
1				Prevalence Index worksheet:
2				Total % Cover of: Multiply by:
3.				OBL species x1 =
4				FACW species x2 =
5				FAC species x3 =
		= Total Cover		FACU species x4 =
Herb Stratum (Plot Size: 4' x 6')				UPL species x5 =
1. Phalaris arundinacea	<u>70</u>	x	FACW	Column Totals: (A) (B)
2. Agrostis stolonifera	<u>5</u>		FACW	Prevalence Index = B/A =
3. Elymus repens	<u>5</u>		<u>FACU</u>	Hydrophytic Vegetation Indicators:
4. Anemone canadensis	<u>5</u>		FACW	<u>x</u> 1 – Rapid Test for Hydrophytic Vegetation
5. Apocynum cannabinum	<u>5</u>		<u>FAC</u>	2 - Dominance Test is >50%
6. Bromus inermis	<u>5</u>		<u>UPL</u>	3 – Prevalence Index is ≤3.0¹
7. Symphyotrichum lanceolatum	<u>5</u>		FACW	
8				 4 - Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet)
9				Problematic Hydrophytic Vegetation ¹ (Explain)
10				¹ Indicators of hydric soil and wetland hydrology must be present,
	<u>100</u>	= Total Cover		unless disturbed or problematic.
Woody Vine Stratum (Plot Size:)				
1				
2				
		= Total Cover		
% Bare Ground in Herb Stratum				Hydrophytic Vegetation Present? Yes 🛛 No 🗌
Remarks:				

SOII

Sampling Point: 6u

Profile Description: (Describ	be to the de	epth nee	ded to doci	ument the indicator	or confirm the a	absence of								
Depth Mat	rix			Redox F	eatures									
(inches) Color (moist)	%		Color (Mo	ist) %	Type ¹	Loc ²	Т	exture	Remarks					
<u>0-6</u> <u>2.5Y 2/1</u>	10	0												
<u>6-13</u> <u>2.5Y 6/3</u>	<u>98</u>	5	<u>2.5Y 5/6</u>	<u>5</u>	<u>C</u>	M								
		_												
¹ Type: C= Concentration, D=	Depletion,	RM=Rec	luced Matri	ix, CS=Covered or	Coated Sand G	rains. ² Lo	cation: P	on: PL=Pore Lining, M=Matrix						
Hydric Soil Indicators: (App	licable to a	all LRRs,	unless oth	erwise noted.)				Indicators for Problematic Hydric Soils ³ :						
Histosol (A1)				Sandy Gleyed Ma	atrix (S4)			1 cm Muck (A9) (LRR I, J)						
Histic Epipedon (A2)				Sandy Redox (S5	5)				Coast Prairie Redox (A16) (LRR F, G, H)					
Black Histic (A3)				Stripped Matrix (S	36)				Dark Surface (S7) (LRR G)					
Hydrogen Sulfide (A4)				Loamy Mucky Mir	neral (F1)				High Plains Depressions (F16)					
Stratified Layers (A5) (I	LRR F)			Loamy Gleyed M	atrix (F2)				(LRR H outside of MLRA 72 & 73)					
1 cm Muck (A9) (LRR I	-, G, H)			Depleted Matrix (F3)				Reduced Vertic (F18)					
Depleted Below Dark S	urface (A1	1)		Redox Dark Surfa	ace (F6)				Red Parent Material (TF2)					
Thick Dark Surface (A1	2)			Depleted Dark Su	urface (F7)				Very Shallow Dark Surface (TF 12)					
Sandy Mucky Mineral (S1)			Redox Depressio	ns (F8)			Other (Explain in Remarks)						
2.5 CM Mucky Peat or	Peat (S2)(LRR G, I	H) 🗆	High Plains Depre	essions (F16)				cators of hydrophytic vegetation and wetland blogy must be present, unless disturbed or					
5 cm Mucky Peat or Pe	at (S3) (LF	RR F)		(MLRA 72 & 73	of LRR H)				ematic.					
Restrictive Layer (if present	t):													
Туре:														
Depth (Inches):								Hydr	ic Soils Present? Yes 🗌 No 🛛					
Remarks:														
HYDROLOGY														
Wetland Hydrology Indicate	ors:													
Primary Indicators (minimum	of one req	uired; ch	eck all that	apply)					dary Indicators (2 or more required)					
Surface Water (A1)				Salt Crust (B11)			l	Surface Soil Cracks (B6)						
High Water Table (A2)				Aquatic Invertebra				□ s	Sparsely Vegetated Concave Surface (B8)					
Saturation (A3)				Hydrogen Sulfide	Odor (C1)				Drainage Patterns (B10)					
Water Marks (B1)				Dry Season Wate	er Table (C2)				Oxidized Rhizospheres along Living Roots (C3)					
Sediment Deposits (B2	2)			Oxidized Rhizosp	heres along Liv	ing Roots ((C3)		(where tilled)					
Drift Deposits (B3)				(where not tilled)				Crayfish Burrows (C8)					
Algal Mat or Crust (B4))			Presence of Redu	uced Iron (C4)			🗆 s	Saturation Visible on Aerial Imagery (C9)					
Iron Deposits (B5)				Thin Muck Surfac	e (C7)				Geomorphic Position (D2)					
Inundation Visible on A	erial Imag	ery (B7)		Other (Explain in	Remarks)			🛛 F	AC-Neutral Test (D5)					
Water-Stained Leav	es (B9)							D F	rost-Heave Hummocks (D7) (LRR F)					
Field Observations:	. ,													
Surface Water Present?	Yes		lo 🛛	Depth (inche	s):									
Water Table Present?		_	lo 🖂	Depth (inche	,									
Saturation Present?							Wotland	Ludes	Nogy Brosont? Yos M No 🗖					
(includes capillary fringe)			lo 🛛	Depth (inche	,			nyuro	ology Present? Yes 🛛 No 🗌					
Describe Recorded Data (str	eam gauge	e, monito	oring well, a	aerial photos, previo	ous inspections)	, if availabl	le:							
Remarks:														

Project Site:	Black Rive	r Impou	undment Site			City/County: Pennin			on	Sampling	Date:	<u>8-23-</u>	2017
Applicant/Owner:	Houston E	nginee	ring, Inc.					State:	MN	Sampling	Point:	<u>7u</u>	
Investigator(s):	Donna Jac	ob and	Mark D Aanen	son		Sectio	on, Township, F	Range:	S25-T153	N-R45W			
Landform (hillslope,	terrace, etc	.): <u>d</u>	itch slope		Local	relief (cor	ncave, convex,	none):	none		S	lope (%): <u>1</u>
Subregion (LRR):	E		Lat: <u>48.03</u>	6164		Long:	-96.392839		I	Datum:	NAD19	<u>83</u>	
Soil Map Unit Name	Strathc	ona fin	e sandy loam						NWI class	sification:	Uplan	<u>d</u>	
Are climatic / hydrold	ogic condition	ons on t	he site typical f	or this	time of year? Yes	🛛 No	🔲 (If no, e	xplain in	Remarks.)				
Are Vegetation], Soil	⊠,	or Hydrology	X,	significantly disturbed?	? Are	e "Normal Circu	imstances	s" present?	Yes	\boxtimes	No	
Are Vegetation], Soil	□,	or Hydrology	□,	naturally problematic?	(If r	needed, explair	n any ans	wers in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Pemarke:									
Wetland Hydrology Present?	Yes		No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes	
Hydric Soil Present?	Yes		No	\boxtimes					
Hydrophytic Vegetation Present?	Yes	\boxtimes	No						

Remarks:

Tree Stratum (Plot Size:)	Absolute <u>% Cover</u>	Dominant Species?	Indicator Status	Dominance Test Worksheet:
1 2				Number of Dominant Species That Are OBL, FACW, or FAC: (A)
3 4				Total Number of Dominant (B) Species Across All Strata:
Sapling/Shrub Stratum (Plot Size:)		= Total Cover		Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B)
1				Prevalence Index worksheet:
2				Total % Cover of: Multiply by:
3.				OBL species x1 =
4				FACW species x2 =
5				FAC species x3 =
		= Total Cover		FACU species x4 =
Herb Stratum (Plot Size: 4' x 6')				UPL species x5 =
1. Phalaris arundinacea	<u>70</u>	x	FACW	Column Totals: (A) (B)
2. Agrostis stolonifera	<u>5</u>		FACW	Prevalence Index = B/A =
3. Elymus repens	<u>5</u>		FACU	Hydrophytic Vegetation Indicators:
4. Anemone canadensis	<u>5</u>		FACW	<u>x</u> 1 – Rapid Test for Hydrophytic Vegetation
5. Apocynum cannabinum	<u>5</u>		<u>FAC</u>	2 - Dominance Test is >50%
6. Bromus inermis	<u>5</u>		<u>UPL</u>	3 – Prevalence Index is $\leq 3.0^{1}$
7. Symphyotrichum lanceolatum	<u>5</u>		FACW	
8				 4 - Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet)
9				Problematic Hydrophytic Vegetation ¹ (Explain)
10				¹ Indicators of hydric soil and wetland hydrology must be present,
	<u>100</u>	= Total Cover		unless disturbed or problematic.
Woody Vine Stratum (Plot Size:)				
1				
2				
		= Total Cover		
% Bare Ground in Herb Stratum				Hydrophytic Vegetation Present? Yes 🛛 No 🗌
Remarks:				

60	
30	

Sampling Point: 7u

Profi	e Description: (Describ	be to the	depth n	eeded	to docu	ument the indica	tor or confirm the	absence	of indicato	ors.)	
De	epth Mat	rix				Redox	k Features				
(inch	es) Color (moist)		%	Co	lor (Mo	ist) %	Type ¹	Loc	2 I	Texture	e Remarks
C	<u>-6</u> <u>2.5Y 2/1</u>		100								
<u>6</u>	<u>-13</u> <u>2.5Y 6/3</u>		<u>95</u>	2	.5Y 5/6	<u>5</u>	<u>C</u>	M			
		_							_		
		_									
		_							_		
_		_							_		
		_							_		
¹ Type	: C= Concentration, D=I	Depletio	n, RM=F	Reduce	ed Matri	x, CS=Covered	or Coated Sand	Grains. ² I	Location: F	PL=Po	re Lining, M=Matrix
Hydri	c Soil Indicators: (App	licable t	o all LRF	Rs, unl	ess oth	erwise noted.)				Indi	cators for Problematic Hydric Soils ³ :
	Histosol (A1)					Sandy Gleyed	Matrix (S4)				1 cm Muck (A9) (LRR I, J)
	Histic Epipedon (A2)					Sandy Redox ((S5)				Coast Prairie Redox (A16) (LRR F, G, H)
	Black Histic (A3)					Stripped Matrix					Dark Surface (S7) (LRR G)
	Hydrogen Sulfide (A4)					Loamy Mucky					High Plains Depressions (F16)
	Stratified Layers (A5) (I	RR F)				Loamy Gleyed				_	(LRR H outside of MLRA 72 & 73)
	1 cm Muck (A9) (LRR F	-				Depleted Matri					Reduced Vertic (F18)
	Depleted Below Dark S	,	A11)			Redox Dark Su					Red Parent Material (TF2)
	Thick Dark Surface (A1		,			Depleted Dark					Very Shallow Dark Surface (TF 12)
	Sandy Mucky Mineral (Redox Depress					Other (Explain in Remarks)
	2.5 CM Mucky Peat or I		2)(LRR (G. H)			pressions (F16)			³ Indi	cators of hydrophytic vegetation and wetland
	5 cm Mucky Peat or Pe			, ,		(MLRA 72 &					ology must be present, unless disturbed or lematic.
	ictive Layer (if present	. ,	· · · ·			`	,				
Type:											
• •	(Inches):									Hvd	ric Soils Present? Yes 🔲 No 🛛
Rema										- Hyu	
HYD	ROLOGY										
Wetla	Ind Hydrology Indicato	ors:									
Prima	ry Indicators (minimum	of one r	equired;	check	all that	apply)				Secor	dary Indicators (2 or more required)
	Surface Water (A1)					Salt Crust (B11	1)				Surface Soil Cracks (B6)
	High Water Table (A2)					Aquatic Inverte	brates (B13)				Sparsely Vegetated Concave Surface (B8)
	Saturation (A3)					Hydrogen Sulfi	ide Odor (C1)				Drainage Patterns (B10)
	Water Marks (B1)						ater Table (C2)				Oxidized Rhizospheres along Living Roots (C3)
	Sediment Deposits (B2	2)					spheres along Li	vina Roots		_	(where tilled)
	Drift Deposits (B3)	,			_	(where not till		5	. ,		Crayfish Burrows (C8)
	Algal Mat or Crust (B4))					educed Iron (C4)				Saturation Visible on Aerial Imagery (C9)
	Iron Deposits (B5)	,				Thin Muck Sur	. ,				Geomorphic Position (D2)
	Inundation Visible on A	erial Im	agery (B	37)		Other (Explain					FAC-Neutral Test (D5)
	Water-Stained Leav			.,							Frost-Heave Hummocks (D7) (LRR F)
	Observations:	00 (20)	/								
	ce Water Present?	Yes		No	\boxtimes	Depth (inc	hes) [.]				
	Table Present?	Yes		No		Depth (inc	,				
	ation Present?		_								
	des capillary fringe)	Yes		No	\boxtimes	Depth (inc	hes):		wetland	a Hyar	ology Present? Yes 🔲 No 🛛
Desci	ibe Recorded Data (str	eam gai	uge, moi	nitoring	g well, a	erial photos, pre	evious inspections	s), if availa	ible:		
Rem	arks:										

Project Site:	Black	River Impo	oundment Site	e		City/County: Penr			on	Sampling Date:		<u>8-23-</u>	2017
Applicant/Owner:	Houst	on Engine	ering, Inc.					State:	MN	Sampling	Point:	<u>7w</u>	
Investigator(s):	Donna	a Jacob an	d Mark D Aar	nenson		Secti	ion, Township, F	Range:	S25-T153	N-R45W			
Landform (hillslope,	terrace	, etc.):	ditch bottom		Loc	al relief (cc	oncave, convex,	none):	<u>concave</u>		S	lope (%): <u>1</u>
Subregion (LRR):	E		Lat: <u>48</u>	3.036180		Long:	-96.392797		I	Datum: I	NAD198	33	
Soil Map Unit Name	: <u>Str</u>	athcona fi	ne sandy loar	<u>m</u>					NWI class	sification:	Uplan	<u>d</u>	
Are climatic / hydrold	ogic cor	nditions on	the site typic	al for this	time of year? Yes	🖾 No	🔲 (lf no, e	xplain in l	Remarks.)				
Are Vegetation], So	oil ⊠,	or Hydrolog	gy 🖾,	significantly disturbe	d? Ar	re "Normal Circu	imstances	s" present?	Yes	\boxtimes	No	
Are Vegetation], So	oil □,	or Hydrolog	gy □,	naturally problemation	c? (If	needed, explain	n any ans	wers in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	\boxtimes	No					
Hydric Soil Present?	Yes	\bowtie	No					
Wetland Hydrology Present?	Yes	\boxtimes	No	Is the Sampling Area within a Wetland?	Yes	\boxtimes	No	
Remarks [.]								

Remarks:

Tree Stratum (Plot Size:)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test Worksheet:
1 2				Number of Dominant Species (A) That Are OBL, FACW, or FAC:
3 4				Total Number of Dominant Species Across All Strata: (B)
Sapling/Shrub Stratum (Plot Size:)		= Total Cove	r	Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B)
1				Prevalence Index worksheet:
2				Total % Cover of: Multiply by:
3				OBL species x1 =
4				FACW species x2 =
5				FAC species x3 =
		= Total Cove	er	FACU species x4 =
Herb Stratum (Plot Size: 4' x 6')				UPL species x5 =
1. Phalaris arundinacea	<u>80</u>	X	FACW	Column Totals: (A) (B)
2. Spartina pectinata	<u>10</u>		FACW	Prevalence Index = B/A =
3. Symphyotrichum lanceolatum	<u>5</u>		FACW	Hydrophytic Vegetation Indicators:
4. Apocynum cannabinum	<u>5</u>		FAC	x 1 – Rapid Test for Hydrophytic Vegetation
5				2 - Dominance Test is >50%
6				3 – Prevalence Index is ≤3.01
7				4 - Morphological Adaptations ¹ (Provide supporting data in
8				Remarks or on a separate sheet)
9				Problematic Hydrophytic Vegetation ¹ (Explain)
10				¹ Indicators of hydric soil and wetland hydrology must be present,
	<u>100</u>	= Total Cove	er	unless disturbed or problematic.
Woody Vine Stratum (Plot Size:)				
1				
2				
		= Total Cove	er	
% Bare Ground in Herb Stratum				Hydrophytic Vegetation Present? Yes 🛛 No 🗌
Remarks:				

SOIL

Sampling Point: 7w

Profile	• Description: (Describ	e to the de	pth neede	d to doc	ument the i	ndicator o	or confirm the a	bsence o	of indicato	ors.)	
De	pth Matr	ix		Redox Features							
(inche	color (moist)	%	C	olor (Mo	ist)	%	Type ¹	Loc ²		Textur	e Remarks
<u>0</u> -	-2 <u>10YR 2/1</u>	100	<u> </u>							L	
<u>2-</u>	<u>13</u> <u>10YR 6/2</u>	<u>98</u>		10YR 5/	<u>6</u>	<u>2</u>	<u>C</u>	M		CL	·
					_				_		
			_		_				_		
					_				_		
					_				_		
					_				_		
¹ Type:	C= Concentration, D=D	epletion, f	RM=Redu	ced Matr	ix, CS=Cov	ered or C	oated Sand G	rains. ² L	ocation: I	PL=Pc	pre Lining, M=Matrix
	: Soil Indicators: (Appli	-									cators for Problematic Hydric Soils ³ :
_	Histosol (A1)		-, -		Sandy Gle		rix (S4)				1 cm Muck (A9) (LRR I, J)
_	Histic Epipedon (A2)				Sandy Re	-	()				Coast Prairie Redox (A16) (LRR F, G, H)
_	Black Histic (A3)				Stripped N		;)				Dark Surface (S7) (LRR G)
_											High Plains Depressions (F16)
_	Hydrogen Sulfide (A4)			_	Loamy Mu	-					. ,
_	Stratified Layers (A5) (L	,			Loamy Gl	-				_	(LRR H outside of MLRA 72 & 73)
_	1 cm Muck (A9) (LRR F				Depleted		,				Reduced Vertic (F18)
	Depleted Below Dark Su	-	1)		Redox Da						Red Parent Material (TF2)
_	Thick Dark Surface (A12	-			Depleted		. ,				Very Shallow Dark Surface (TF 12)
	Sandy Mucky Mineral (S				Redox De	•	. ,				Other (Explain in Remarks)
	2.5 CM Mucky Peat or F				-	-	sions (F16)				icators of hydrophytic vegetation and wetland rology must be present, unless disturbed or
	5 cm Mucky Peat or Pea		RRF)		(MLRA 7	72 & 73 0	f LRR H)			prot	plematic.
Restri	ctive Layer (if present)	:									
Туре:											
Depth	(Inches):									Нус	Iric Soils Present? Yes 🛛 No 🗌
Remar	ˈksː										
HYDF	ROLOGY										
	nd Hydrology Indicato	rs:									
Primar	y Indicators (minimum o	of one requ	uired; chec	k all that	apply)					Seco	ndary Indicators (2 or more required)
	Surface Water (A1)				Salt Crust	t (B11)					Surface Soil Cracks (B6)
	High Water Table (A2)				Aquatic In	vertebrat	es (B13)				Sparsely Vegetated Concave Surface (B8)
	Saturation (A3)				Hydrogen		. ,				Drainage Patterns (B10)
	Water Marks (B1)						Table (C2)				Oxidized Rhizospheres along Living Roots (C3)
	()				-		eres along Livi	na Poote	(C3)		
	Sediment Deposits (B2) Drift Deposits (B3)	,			(where no		CICS AIUNY LIVI	ng AUUIS	(00)		(where tilled) Crayfish Burrows (C8)
_				_	-		ad Inc. (0.4)				
	Algal Mat or Crust (B4)						ed Iron (C4)				Saturation Visible on Aerial Imagery (C9)
	Iron Deposits (B5)				Thin Mucl		. ,			\boxtimes	Geomorphic Position (D2)
	Inundation Visible on A	-	ery (B7)		Other (Ex	plain in R	emarks)			\boxtimes	FAC-Neutral Test (D5)
	Water-Stained Leave	es (B9)									Frost-Heave Hummocks (D7) (LRR F)
Field (Observations:										
Surfac	e Water Present?	Yes	□ No	\boxtimes	Depth	n (inches)	:				
Water	Table Present?	Yes	🗆 No	\boxtimes	Depth	n (inches)	:				
	tion Present?	Yes	🗆 No	\boxtimes	Depth	n (inches)	:		Wetland	d Hydi	rology Present? Yes 🛛 No 🗌
	les capillary fringe) be Recorded Data (stre	am asuas	monitori					if availab	nle:	-	
Desch		an yauye	, monitofii	ig weil, d		5, previou		, ii avaiidi			
Rema	IFKS.										

Project Site:	Black River	· Impou	Indment Site			City/County: Penning			on	Sampling	Date:	<u>8-23-</u>	2017
Applicant/Owner:	Houston Er	ngineer	ing, Inc.					State:	MN	Sampling	Point:	<u>8u</u>	
Investigator(s):	Donna Jac	ob and	Mark D Aanens	son		Sec	tion, Township, I	Range:	<u>S25-T153</u>	N-R45W			
Landform (hillslope,	terrace, etc.): <u>d</u> i	itch slope		Loc	al relief (c	oncave, convex,	none):	none		S	lope (%): <u>5</u>
Subregion (LRR):	E		Lat: <u>48.03</u>	<u>8978</u>		Long:	-96.392771			Datum:	NAD198	33	
Soil Map Unit Name	: <u>Grimsta</u>	d fine s	sandy loam						NWI class	sification:	Uplan	<u>d</u>	
Are climatic / hydrold	ogic conditio	ns on t	he site typical fo	or this	time of year? Yes	🛛 No	o 🔲 (If no, e	explain in	Remarks.)				
Are Vegetation	, Soil	⊠,	or Hydrology	⊠,	significantly disturbe	d? A	re "Normal Circu	umstance	s" present?	Yes	\boxtimes	No	
Are Vegetation], Soil	□,	or Hydrology	□,	naturally problemation	c? (I	lf needed, explai	n any ans	wers in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Pomarks:									
Wetland Hydrology Present?	Yes		No		Is the Sampling Area within a Wetland?	Yes	No	\boxtimes	
Hydric Soil Present?	Yes		No	\boxtimes					
Hydrophytic Vegetation Present?	Yes	\boxtimes	No						

Remarks:

Tree Stratum (Plot Size:)	Absolute <u>% Cover</u>	Dominant Species?	Indicator Status	Dominance Test Worksheet:
1 2				Number of Dominant Species That Are OBL, FACW, or FAC: (A)
3 4				Total Number of Dominant Species Across All Strata: (B)
Sapling/Shrub Stratum (Plot Size:)		= Total Cover		Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B)
1				Prevalence Index worksheet:
2				Total % Cover of: Multiply by:
3				OBL species x1 =
4				FACW species x2 =
5				FAC species x3 =
		= Total Cover		FACU species x4 =
<u>Herb Stratum (</u> Plot Size: <u>5' radius</u>)				UPL species x5 =
1. Phalaris arundinacea	<u>60</u>	X	FACW	Column Totals: (A) (B)
2. Spartina pectinata	<u>20</u>		FACW	Prevalence Index = B/A =
3. Apocynum cannabinum	<u>10</u>		FAC	Hydrophytic Vegetation Indicators:
4. Symphyotrichum lanceolatum	<u>10</u>		FACW	x 1 – Rapid Test for Hydrophytic Vegetation
5. Elymus repens	<u>5</u>		FACU	2 - Dominance Test is >50%
6				3 – Prevalence Index is ≤3.01
7				 4 - Morphological Adaptations¹ (Provide supporting data in
8				Remarks or on a separate sheet)
9				Problematic Hydrophytic Vegetation ¹ (Explain)
10				¹ Indicators of hydric soil and wetland hydrology must be present,
	<u>105</u>	= Total Cover		unless disturbed or problematic.
Woody Vine Stratum (Plot Size:)				
1				
2				
		= Total Cover		
% Bare Ground in Herb Stratum				Hydrophytic Vegetation Present? Yes 🛛 No 🗌
Remarks:				

rofile Descr	ription: (Describe to	the depth nee	ded to doc	ument the indica	tor or confirm the	absence of in	dicators)	Sampling Point: 8u
Depth	Matrix	the depth het			Features		dicators.)	
nches)	Color (moist)	%	Color (Mo		Type ¹	Loc ²	– Texture	e Remarks
0-2	2.5Y 2/1	100					L	
<u>2-13</u>	<u>2.5Y 5/1</u>	<u>100</u>					FS	
<u>13-16</u>	<u>2.5Y 5/2</u>	<u>100</u>					<u>S</u>	
<u>16+</u>	<u>2.5Y 6/2</u>	<u>90</u>	<u>2.5Y 5/4</u>	<u>10</u>	<u>C</u>	M	<u>CL</u>	
ype: C= Co	ncentration, D=Deple	etion, RM=Re	duced Matri	ix, CS=Covered	or Coated Sand G	irains. ² Locat	tion: PL=Por	– Eining, M=Matrix
ydric Soil Ir	ndicators: (Applicab	le to all LRRs	, unless oth	erwise noted.)			Indic	cators for Problematic Hydric Soils ³ :
Histoso	I (A1)			Sandy Gleyed	Matrix (S4)			1 cm Muck (A9) (LRR I, J)
Histic E	pipedon (A2)			Sandy Redox (S5)		Coast Prairie Redox (A16) (LRR F, G, H)	
Black H	listic (A3)			Stripped Matrix	(S6)		Dark Surface (S7) (LRR G)	
Hydrog	en Sulfide (A4)			Loamy Mucky I	Mineral (F1)		High Plains Depressions (F16)	
Stratifie	d Layers (A5) (LRR	F)		Loamy Gleyed	Matrix (F2)			(LRR H outside of MLRA 72 & 73)
1 cm M	uck (A9) (LRR F, G,	H)		Depleted Matrix	x (F3)			Reduced Vertic (F18)
Deplete	ed Below Dark Surface	ce (A11)		Redox Dark Su	Irface (F6)			Red Parent Material (TF2)
Thick D	ark Surface (A12)			Depleted Dark	Surface (F7)			Very Shallow Dark Surface (TF 12)
Sandy I	Mucky Mineral (S1)			Redox Depress	sions (F8)			Other (Explain in Remarks)
2.5 CM	Mucky Peat or Peat	(S2)(LRR G,	H) 🗆	High Plains De	pressions (F16)			cators of hydrophytic vegetation and wetland
5 cm M	ucky Peat or Peat (S	3) (LRR F)		(MLRA 72 & 7	73 of LRR H)			ology must be present, unless disturbed or lematic.
strictive L	ayer (if present):							
vpe:								
epth (Inches	s):						Hvdi	ric Soils Present? Yes 🗌 No

Prima	ary Indicators (minimun	n of one re	equired	; check	all that		Sec	ondary Indicators (2	or more	required)		
	Surface Water (A1)					Salt Crust (B11)			Surface Soil Crack	ks (B6)			
	High Water Table (A2	2)				Aquatic Invertebrates (B13)			Sparsely Vegetated Concave Surface (B8)				
	Saturation (A3)					Hydrogen Sulfide Odor (C1)			Drainage Patterns (B10)				
	Water Marks (B1)					Dry Season Water Table (C2)			Oxidized Rhizospheres along Living Roots (C3)				
	Sediment Deposits (E	32)				Oxidized Rhizospheres along Living Roo	ots (C3)		(where tilled)				
	Drift Deposits (B3)					(where not tilled)			Crayfish Burrows	(C8)			
	Algal Mat or Crust (B4	4)				Presence of Reduced Iron (C4)			Saturation Visible	on Aeria	I Imager	(C9)	
	Iron Deposits (B5)					Thin Muck Surface (C7)			Geomorphic Positi	ion (D2)			
	Inundation Visible on	Aerial Im	agery (I	B7)		Other (Explain in Remarks)		\boxtimes	FAC-Neutral Test (D5)				
□ Water-Stained Leaves (B9)									Frost-Heave Hum	mocks ([07) (LRR	F)	
Field	Observations:												
Surfa	ce Water Present?	Yes		No	\boxtimes	Depth (inches):							
Wate	r Table Present?	Yes		No	\boxtimes	Depth (inches):							
	ation Present? des capillary fringe)	Yes		No	\boxtimes	Depth (inches):	Wet	land Hyd	trology Present?	Yes		No	
Desc	ribe Recorded Data (s	tream gau	uge, mo	onitoring	g well, a	aerial photos, previous inspections), if avail	ilable:						
Rem	arks:												

Project Site:	Black	River Im	poundment	Site			С	ity/Coun	ity:	Penningt	on	Sampling	Date:	<u>8-23-</u>	2017
Applicant/Owner:	Houst	on Engin	eering, Inc.							State:	MN	Sampling	Point:	<u>9u</u>	
Investigator(s):	Donna	a Jacob a	and Mark D	Aanenson			S	ection, T	ownship, l	Range:	<u>S25-T153</u>	N-R45W			
Landform (hillslope,	terrace	e, etc.):	ditch slop	<u>e</u>		Loc	al relief	(concav	e, convex,	none):	none		S	Slope (%): <u>5</u>
Subregion (LRR):	<u>F</u>		Lat:	<u>48.04754</u>	<u>·6</u>		Lon	g: <u>-96.</u>	392845			Datum:	NAD19	83	
Soil Map Unit Name	: <u>St</u>	rathcona	fine sandy l	oam							NWI class	sification:	Uplan	d	
Are climatic / hydrold	ogic co	nditions o	on the site ty	pical for th	nis time of year?	Yes	\boxtimes	No 🗌	(If no, e	explain in	Remarks.)				
Are Vegetation], S	oil 🛛	, or Hydro	ology 🛛	, significantly	disturbe	÷d?	Are "No	ormal Circu	umstances	s" present?	Yes	\boxtimes	No	
Are Vegetation], S	oil 🗌	, or Hydro	ology 🗆], naturally pro	oblematio	c?	(If need	ded, explai	n any ans	wers in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Pomarks:								
Wetland Hydrology Present?	Yes	No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes	
Hydric Soil Present?	Yes	No	\boxtimes					
Hydrophytic Vegetation Present?	Yes	No	\boxtimes					

Remarks:

Tree Stratum (Plot Size:)	Absolute <u>% Cover</u>	Dominant Species?	Indicator <u>Status</u>	Dominance Test	Worksheet:				
1 2				Number of Domina That Are OBL, FA		<u>0</u>	(A)		
3 4				Total Number of D Species Across All		<u>1</u>	(B)		
Sapling/Shrub Stratum (Plot Size:)		= Total Cove	er	Percent of Domina That Are OBL, FA		<u>0</u>	(A/B)		
1				Prevalence Index	worksheet:				
2				Total % Cov	ver of:	Multiply	<u>/ by:</u>		
3				OBL species	<u>0</u>	x1 =	<u>0</u>		
4				FACW species	<u>15</u>	x2 =	<u>30</u>		
5				FAC species	<u>0</u>	x3 =	<u>0</u>		
		= Total Cove	er	FACU species	<u>20</u>	x4 =	<u>80</u>		
Herb Stratum (Plot Size: 5' radius)				UPL species	<u>70</u>	x5 =	<u>350</u>		
1. Bromus inermis	<u>70</u>	x	<u>UPL</u>	Column Totals:	<u>105</u>	(A)	<u>460</u>	(B)	
2. Ambrosia artemisiifolia	<u>10</u>		FACU		Prevalence	Index = B	/A = <u>4.4</u>		
3. Agrostis stolonifera	<u>10</u>		FACW	Hydrophytic Vege	etation Indica	itors:			
4. Setaria pumila	<u>5</u>		FACU	1 – Ra	pid Test for H	ydrophytic	Vegetatio	n	
5. Elymus repens	<u>5</u>		FACU	2 - Dor	minance Test	is >50%			
6. Persicaria masculosa	<u>5</u>		FACW	3 – Pre	evalence Inde	k is ≤3.0¹			
7					phological Ad		(Provide a	supporting	ni eteb r
8				Re	marks or on a	separate	sheet)	supporting	y data in
9				Problem	matic Hydroph	nytic Vege	tation ¹ (Ex	plain)	
10				¹ Indicators of hydri	ic soil and we	land hydro	ology must	be prese	nt,
	<u>105</u>	= Total Cove	er	unless disturbed o	r problematic.	-			
Woody Vine Stratum (Plot Size:)									
1									
2									
		= Total Cove	er						
% Bare Ground in Herb Stratum				Hydrophytic Vege	etation Prese	nt? Y	es 🗆	No	\boxtimes
Remarks:									

s	ο	IL	

Sampling Point: 9u

Profile Desc	cription: (Describ	be to the	e depth r	needed	l to doc	ument the indic	cator or	r confirm the a	absence o	f indicato	ors.)	Sampling		-		
Depth	. Mat		•				lox Fea									
(inches)	Color (moist)		%	Co	olor (Mo	ist) %		Type ¹	Loc ²		Textur	e				
<u>0-2</u>	2.5Y 2/1		100								SL					
<u>2-5</u>	<u>2.5Y 3/1</u>		100							_	LS					
<u>5-13</u>	<u>2.5Y 5/2</u>		<u>90</u>	2	2.5Y 5/6	<u>i 10</u>		<u>C</u>	M		<u>S</u>					
		_								_						
		_								_						
		_								_						
		_					_			_						
1Turney C= C		_ Doplatia		Doduo						-						
	Indicators: (App		,			,		bated Sand G	rains. ² L0	ocation: I		ore Lining, M=Matrix		dria Sa	ilo ³ i	
Histos				rts, uni		Sandy Gleye		iv (S4)				1 cm Muck (A9)	-		115*.	
_	Epipedon (A2)					Sandy Gleye		IX (04)				Coast Prairie Re		-		、 、
	Histic (A3)					Stripped Mat		`				Dark Surface (S	-		г, 0, п	,
	gen Sulfide (A4)					Loamy Muck						High Plains Dep		-		
	ed Layers (A5) (I					Loamy Gleye		. ,				(LRR H outsid			8. 73)	
	Muck (A9) (LRR F					Depleted Ma						Reduced Vertic			a 13)	
	ted Below Dark S		Δ11)			Redox Dark						Red Parent Mat		2)		
	Dark Surface (A1		,,,,,			Depleted Dar		. ,				Very Shallow Da		,	12)	
_	Mucky Mineral (-				Redox Depre						Other (Explain in			,	
_ `	Mucky Peat or I	-	2)(LRR	G, H)		High Plains [icators of hydrophy				d
	Jucky Peat or Pe	-				(MLRA 72 8	-					rology must be pres plematic.	ent, unl	ess distu	irbed or	
Restrictive	Layer (if present	t):	<u> </u>													
Type:																
Depth (Inche	es):										Hvd	Iric Soils Present?	Yes	; □	No	
Remarks:																
HYDROLO)GY															
Wetland Hy	drology Indicato	ors:														
Primary Indi	cators (minimum	of one r	equired	, check	all that	apply)					Seco	ndary Indicators (2	or more	required	l)	
Surfac	ce Water (A1)					Salt Crust (B	11)					Surface Soil Crack	s (B6)			
🔲 High \	Water Table (A2)					Aquatic Inver	rtebrate	es (B13)				Sparsely Vegetated	d Conca	ve Surfa	ice (B8)	
Satura	ation (A3)					Hydrogen Su	Ifide O	dor (C1)				Drainage Patterns	(B10)			
Water	Marks (B1)					Dry Season \	Water 7	Table (C2)				Oxidized Rhizosph	eres alo	ng Livin	g Roots (C3)
Sedim Sedim	nent Deposits (B2	2)				Oxidized Rhi	zosphe	eres along Liv	ing Roots	(C3)		(where tilled)				
Drift D	Deposits (B3)					(where not t	illed)					Crayfish Burrows (C8)			
Algal	Mat or Crust (B4))				Presence of	Reduce	ed Iron (C4)				Saturation Visible of	on Aeria	I Imager	y (C9)	
Iron D	eposits (B5)					Thin Muck Si	urface	(C7)				Geomorphic Position	on (D2)			
Inund	ation Visible on A	erial Im	agery (E	37)		Other (Explai	in in Re	emarks)				FAC-Neutral Test (D5)			
□ Wate	er-Stained Leav	es (B9)									Frost-Heave Humn	nocks (E	07) (LRR	R F)	
Field Obser	vations:]
Surface Wat	er Present?	Yes		No	\boxtimes	Depth (ir	nches):									
Water Table	Present?	Yes		No	\boxtimes	Depth (ir	nches):									
Saturation P (includes cap		Yes		No	\boxtimes	Depth (ir	nches):			Wetland	d Hydi	rology Present?	Yes		No	
Describe Re	ecorded Data (str	eam ga	uge, mo	nitoring	g well, a	aerial photos, p	oreviou	s inspections)	, if availab	ole:						

Remarks:

WETLAND DETERMINATION DATA	FORM – Great Plains Region
----------------------------	----------------------------

									U U			
Project Site:	Blac	k River	Impou	indment Site			City/County:	Penning	ton	Sampling Date	e: <u>8</u>	-23-2017
Applicant/Owner:	Hous	ston En	gineer	ing, Inc.				State:	MN	Sampling Poir	nt: <u>9</u>	w
Investigator(s):	Doni	na Jaco	b and	Mark D Aanen	son		Section, Township,	Range:	<u>S25-T153</u>	N-R45W		
Landform (hillslope,	terrac	ce, etc.)	: _			Local reli	ief (concave, convex	, none):			Slop	oe (%):
Subregion (LRR):	_			Lat: <u>48.04</u>	7678	Lo	ong: <u>-96.392824</u>		l	Datum: <u>NAD</u>	1983	
Soil Map Unit Name	: <u>s</u>	Strathco	na fine	e sandy loam					NWI class	sification:		
Are climatic / hydrold	ogic c	onditio	ns on t	he site typical f	or this	time of year? Yes	No 🗌 (If no,	explain in	Remarks.)			
Are Vegetation], :	Soil	□,	or Hydrology	□,	significantly disturbed?	Are "Normal Circ	umstance	s" present?	Yes 🛛	N	lo 🗌
Are Vegetation	⊐, ∶	Soil	□,	or Hydrology	□,	naturally problematic?	(If needed, expla	in any ans	wers in Re	marks.)		

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	\boxtimes	No					
Hydric Soil Present?	Yes	\bowtie	No					
Wetland Hydrology Present?	Yes	\boxtimes	No	Is the Sampling Area within a Wetland?	Yes	\boxtimes	No 🗆]
Remarks:								

Tree Stratum (Plot Size:)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test Worksheet:
1				Number of Dominant Species
2				That Are OBL, FACW, or FAC: (A)
3				Total Number of Dominant (B)
4				Species Across All Strata:
		= Total Cover		Percent of Dominant Species
Sapling/Shrub Stratum (Plot Size:)				That Are OBL, FACW, or FAC: (A/B)
1				Prevalence Index worksheet:
2				Total % Cover of: Multiply by:
3				OBL species x1 =
4				FACW species x2 =
5				FAC species x3 =
		= Total Cover		FACU species x4 =
Herb Stratum (Plot Size: 3' x 6')				UPL species x5 =
1. Beckmannia syzigachne	<u>30</u>	x	<u>OBL</u>	Column Totals: (A) (B)
2. Phalaris arundinacea	<u>20</u>	X	FACW	Prevalence Index = B/A =
3. Ambrosia artemisiifolia	<u>10</u>		FACU	Hydrophytic Vegetation Indicators:
4. Rumex crispus	<u>10</u>		FAC	<u>x</u> 1 − Rapid Test for Hydrophytic Vegetation
5. Spartina pectinata	<u>10</u>		FACW	2 - Dominance Test is >50%
6. Symphyotrichum lanceolatum	<u>5</u>		FACW	3 – Prevalence Index is ≤3.01
7. Typha sp.	<u>5</u>		<u>OBL</u>	 4 - Morphological Adaptations¹ (Provide supporting data in
8. Hordeum jubatum	<u>5</u>		FACW	Remarks or on a separate sheet)
9				Problematic Hydrophytic Vegetation ¹ (Explain)
10				¹ Indicators of hydric soil and wetland hydrology must be present,
	<u>95</u>	= Total Cover		unless disturbed or problematic.
Woody Vine Stratum (Plot Size:)				
1				
2				
		= Total Cover		
% Bare Ground in Herb Stratum 5				Hydrophytic Vegetation Present? Yes 🛛 No 🗌
Remarks:				
vegetation had been sprayed with herbicide				

SOIL

Sampling Point: 9w

Profile Des	scription: (Describ	e to the	depth r	needed	to doci	ument the indic	ator or con	firm the abs	sence c	of indicate	ors.)				
Depth	Mati	rix				Redo	x Features	5							
(inches)	Color (moist)		%	Co	lor (Mo	ist) %	T	ype ¹	Loc ²		Textur	re Remarks			
<u>0-14</u>	<u>10YR 2/1</u>		100								Ŀ	· · · · · · · · · · · · · · · · · · ·			
<u>14-19</u>	<u>10YR 5/1</u>		100							_	SL	<u> </u>			
<u>19-24</u>	<u>2.5Y 6/2</u>		<u>95</u>	2	.5Y 5/6	<u>5</u>		<u>C</u>	M		SiL	<u>L</u>			
		_								_					
		_								_					
		_								_					
		_								_					
		_								_					
¹ Type: C= 0	Concentration, D=[Depletio	n, RM=F	Reduce	d Matri	ix, CS=Covered	l or Coated	d Sand Graii	ns. ²L	ocation:	PL=Pc	ore Lining, M=Matrix			
Hydric Soi	I Indicators: (App	licable to	o all LRI	Rs, unle	ess oth	erwise noted.)					Indi	licators for Problematic Hydric Soils ³ :			
Histo	sol (A1)					Sandy Gleyed	I Matrix (S4	4)				1 cm Muck (A9) (LRR I, J)			
Histic	c Epipedon (A2)					Sandy Redox	(S5)					Coast Prairie Redox (A16) (LRR F, G, H)			
Black	(Histic (A3)					Stripped Matri	x (S6)					Dark Surface (S7) (LRR G)			
Hydro	ogen Sulfide (A4)					Loamy Mucky	Mineral (F	1)				High Plains Depressions (F16)			
□ Strati	ified Layers (A5) (L	RR F)				Loamy Gleyed	d Matrix (F	2)				(LRR H outside of MLRA 72 & 73)			
□ 1 cm	Muck (A9) (LRR F	, G, H)				Depleted Mat	ix (F3)					Reduced Vertic (F18)			
Deple Deple	eted Below Dark S	urface (/	A11)			Redox Dark S	urface (F6	j)				Red Parent Material (TF2)			
🛛 Thick	Coark Surface (A1	2)				Depleted Dark	s Surface (F7)				Very Shallow Dark Surface (TF 12)			
Sand	ly Mucky Mineral (S	S1)				Redox Depres	ssions (F8))				Other (Explain in Remarks)			
□ 2.5 C	M Mucky Peat or F	Peat (S2	2)(LRR (G, H)		High Plains D	epressions	s (F16)				dicators of hydrophytic vegetation and wetland drology must be present, unless disturbed or			
	Mucky Peat or Pe		(LRR F)			(MLRA 72 &	73 of LRF	R H)				blematic.			
Restrictive	e Layer (if present	t):													
Type:															
Depth (Inch	Type: Depth (Inches): Hydric Soils Present? Yes														
Remarks:															
HYDROL	OGY														
Wetland H	ydrology Indicato	ors:													
Primary Inc	licators (minimum	of one re	equired;	check	all that	apply)					Seco	ondary Indicators (2 or more required)			
□ Surfa	ace Water (A1)					Salt Crust (B1	1)					Surface Soil Cracks (B6)			
🛛 High	Water Table (A2)					Aquatic Invert	ebrates (B	13)				Sparsely Vegetated Concave Surface (B8)			
🔲 Satu	ration (A3)					Hydrogen Sul	fide Odor (C1)				Drainage Patterns (B10)			
□ Wate	er Marks (B1)					Dry Season V	/ater Table	e (C2)				Oxidized Rhizospheres along Living Roots (C3)			
Sedi	ment Deposits (B2	2)				Oxidized Rhiz	ospheres a	along Living	Roots	(C3)		(where tilled)			
Drift	Deposits (B3)					(where not til	led)					Crayfish Burrows (C8)			
🗌 Alga	I Mat or Crust (B4)					Presence of F	Reduced Iro	on (C4)				Saturation Visible on Aerial Imagery (C9)			
Iron	Deposits (B5)					Thin Muck Su	rface (C7)				\boxtimes	Geomorphic Position (D2)			
🗌 Inun	dation Visible on A	erial Ima	agery (E	87)		Other (Explain	n in Remar	ks)			\boxtimes	FAC-Neutral Test (D5)			
□ Wat	er-Stained Leav	es (B9))									Frost-Heave Hummocks (D7) (LRR F)			
Field Obse	ervations:														
Surface Wa	ater Present?	Yes		No	\boxtimes	Depth (in	ches):								
Water Tabl	e Present?	Yes		No	\boxtimes	Depth (in	ches):								
Saturation (includes ca	Present? apillary fringe)	Yes		No		Depth (in	ches):			Wetlan	d Hyd	Irology Present? Yes 🛛 No 🗌			
Describe F	Recorded Data (stre	eam gau	uge, mo	nitoring	well, a	erial photos, pr	evious insp	pections), if	availal	ble:					
Remarks:															

Project Site:	Black	River In	npoundme	ent Site				С	ity/Cour	nty:	Penningt	ton	Sampling	Date:	<u>8-23-</u>	2017
Applicant/Owner:	Houst	on Engii	neering, li	<u>1C.</u>							State:	MN	Sampling	Point:	<u>10u</u>	
Investigator(s):	Donna	a Jacob	and Mark	D Aanen	son			S	ection,	Township, I	Range:	<u>S24-T153</u>	<u>N-R45W</u>			
Landform (hillslope,	terrace	e, etc.):	ditch s	ope			Loc	al relief	(conca	ve, convex,	none):	none		S	lope (%): <u>5</u>
Subregion (LRR):	<u>F</u>		La	it: <u>48.05</u>	0174			Lon	g: <u>-96</u>	.392832			Datum:	NAD19	33	
Soil Map Unit Name	: <u>He</u>	ecla loan	ny fine sa	nd								NWI class	sification:	Uplan	<u>d</u>	
Are climatic / hydrold	ogic co	nditions	on the sit	e typical f	or this	time of year?	Yes	\boxtimes	No 🗆] (If no, e	explain in	Remarks.)				
Are Vegetation], S	oil 🗵], or H	/drology	X,	significantly d	listurbe	d?	Are "N	ormal Circu	umstances	s" present?	Yes	\boxtimes	No	
Are Vegetation], S	oil 🗌], or H	/drology	□,	naturally prob	olematio	??	(If nee	ded, explai	n any ans	wers in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Pomarks:							
Wetland Hydrology Present?	Yes	No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes
Hydric Soil Present?	Yes	No	\boxtimes				
Hydrophytic Vegetation Present?	Yes	No	\boxtimes				

Remarks:

Tree Stratum (Plot Size:)	Absolute <u>% Cover</u>	Dominant Species?	Indicator <u>Status</u>	Dominance Test V	Worksheet:				
1 2				Number of Domina That Are OBL, FAC		<u>1</u>	(A)		
3 4				Total Number of Do Species Across All		<u>2</u>	(B)		
Sapling/Shrub Stratum (Plot Size:)		= Total Cover		Percent of Domina That Are OBL, FAC		<u>50</u>	(A/B)		
1				Prevalence Index	worksheet:				
2				Total % Cov	ver of:	Multiply	by:		
3				OBL species	<u>0</u>	x1 =	<u>0</u>		
4				FACW species	<u>0</u>	x2 =	<u>0</u>		
5				FAC species	<u>25</u>	x3 =	<u>75</u>		
		= Total Cover		FACU species	<u>70</u>	x4 =	<u>280</u>		
Herb Stratum (Plot Size: 5' radius)				UPL species	<u>o</u>	x5 =	<u>0</u>		
1. Schizachyrium scoparium	<u>60</u>	x	FACU	Column Totals:	<u>95</u>	(A)	<u>355</u>	(B)	
2. Panicum virgatum	<u>20</u>	X	FAC		Prevalence I	ndex = B/	A = <u>3.7</u>		
3. Vicia americana	<u>5</u>		FACU	Hydrophytic Vege	etation Indicat	ors:			
4. Gentiana andrewsii	<u>5</u>		FAC	1 – Rap	oid Test for Hy	drophytic	Vegetation	I	
5. Zizia aurea	<u>5</u>		FAC	2 - Don	ninance Test is	s >50%			
6. Solidago canadensis	<u>5</u>		FACU	3 – Pre	valence Index	is ≤3.0¹			
7					phological Ada		(Provide e	upporting	data in
8					marks or on a			appointing	
9				Probler	matic Hydrophy	tic Veget	ation ¹ (Exp	olain)	
10				¹ Indicators of hydri	c soil and wetl	and hydro	logy must	be presen ⁱ	t,
	<u>100</u>	= Total Cover		unless disturbed or	r problematic.				
Woody Vine Stratum (Plot Size:)									
1									
2									
		= Total Cover							
% Bare Ground in Herb Stratum				Hydrophytic Vege	etation Preser	it? Y€	es 🗆	No	\boxtimes
Remarks:									

SOIL								Sampling F	Point: 10u			
Profile Des	cription: (Describe to	o the depth need	ed to doc	ument the indicato	or or confirm the	absence of inc	dicators.)					
Depth	Matrix			Redox	eatures		_					
(inches)	Color (moist)	%	Color (Mo	oist) %	Type ¹	Loc ²	Texture		Rema	irks		
<u>0-4</u>	<u>2.5Y 4/2</u>	<u>100</u>					<u>FS</u>					
<u>4-24</u>	2.5Y 6/4	<u>100</u>					<u>S</u>					
¹ Type: C= C	oncentration, D=Dep	letion, RM=Redu	uced Matr	rix, CS=Covered o	r Coated Sand G	Grains. ² Locat	tion: PL=Por	e Lining, M=Matrix				
Hydric Soil	Indicators: (Applical	ble to all LRRs, ι	unless oth	nerwise noted.)			Indic	ators for Problem	atic Hydrio	c Soils	3:	
Histos	ol (A1)			1 cm Muck (A9) (LRR I, J)							
Histic	Epipedon (A2)			Sandy Redox (S	5)			Coast Prairie Rec	lox (A16) (LRR F	, G, H))
Black	Histic (A3)			Stripped Matrix (S6)			Dark Surface (S7) (LRR G)			
Hydro	gen Sulfide (A4)			Loamy Mucky M	ineral (F1)			High Plains Depr	essions (F	16)		
Stratif	ied Layers (A5) (LRR	R F)		Loamy Gleyed N	latrix (F2)			(LRR H outside	e of MLRA	72 & 7	73)	
🗌 1 cm I	Muck (A9) (LRR F, G	, H)		Depleted Matrix	(F3)			Reduced Vertic (I	-18)			
Deple	ted Below Dark Surfa	ace (A11)		Redox Dark Sur	face (F6)			Red Parent Mate	rial (TF2)			
Thick	Dark Surface (A12)			Depleted Dark S	urface (F7)			Very Shallow Dar	k Surface	(TF 12))	
	Mucky Mineral (S1)			Redox Depressi	· · /		□ 31	Other (Explain in	,			
	M Mucky Peat or Pea			High Plains Dep				ators of hydrophytic logy must be prese				1
	Mucky Peat or Peat (S3) (LRR F)		(MLRA 72 & 73	3 of LRR H)		probl	ematic.				
Restrictive	Layer (if present):											
Туре:												
Depth (Inche	es):						Hydr	ic Soils Present?	Yes		No	\boxtimes
Remarks:												
HYDROLO	DGY											
Wetland Hy	drology Indicators:											
Primary Indi	cators (minimum of o	ne required; che	ck all that	t apply)			Secon	dary Indicators (2 o	more requ	uired)		
Surfa	ce Water (A1)			Salt Crust (B11)				Surface Soil Cracks	(B6)			
High	Water Table (A2)			Aquatic Inverteb	rates (B13)			Sparsely Vegetated	Concave S	Surface	(B8)	
□ Satur	ation (A3)			Hydrogen Sulfid	e Odor (C1)			Drainage Patterns (I	310)			

Wetla	and Hydrology Indicat	ors:											
Prima	ary Indicators (minimum	of one re	equired	; check	all tha	t apply)	Se	condary Indicators (2	or more	required)		
	Surface Water (A1)		-			Salt Crust (B11)		Surface Soil Crack	(B6)				
	High Water Table (A2))				Aquatic Invertebrates (B13)		Sparsely Vegetate	ed Conca	ve Surfa	ce (B8)		
	Saturation (A3)					Hydrogen Sulfide Odor (C1)		Drainage Patterns	(B10)				
	Water Marks (B1)					Dry Season Water Table (C2)		Oxidized Rhizosph	neres alo	ng Living	g Roots (0	C3)	
	Sediment Deposits (B	2)				ots (C3)	(where tilled)						
	Drift Deposits (B3)					(where not tilled)		Crayfish Burrows	(C8)				
	Algal Mat or Crust (B4)				Presence of Reduced Iron (C4)		Saturation Visible	on Aeria	Imager	y (C9)		
	Iron Deposits (B5)					Thin Muck Surface (C7)		Geomorphic Posit	ion (D2)				
	Inundation Visible on A	Aerial Ima	agery (E	37)		Other (Explain in Remarks)		FAC-Neutral Test	(D5)				
	Water-Stained Leav	/es (B9))					Frost-Heave Hum	mocks (E	07) (LRR	F)		
Field	Observations:		-										
Surfa	ce Water Present?	Yes		No	\boxtimes	Depth (inches):							
Wate	r Table Present?	Yes		No	\boxtimes	Depth (inches):							
	ation Present? des capillary fringe)	Yes		No	\boxtimes	Depth (inches):	Wetland H	ydrology Present?	Yes		No		
Desc	ribe Recorded Data (st	ream gau	lge, mo	nitoring	g well, a	aerial photos, previous inspections), if avai	ilable:						
Rem	arks:												

Project Site:	Black Rive	er Impou	undment Site			City/C	County:	Penningt	on	Sampling	Date:	<u>8-23-</u>	2017
Applicant/Owner:	Houston E	nginee	ring, Inc.					State:	MN	Sampling	Point:	<u>10w</u>	
Investigator(s):	Donna Jao	cob and	Mark D Aanens	son		Section	on, Township, F	Range:	<u>S24-T153</u>	N-R45W			
Landform (hillslope,	terrace, etc	:.): <u>d</u>	litch bottom		Local	relief (co	ncave, convex,	none):	<u>concave</u>		5	Slope (%): <u>1</u>
Subregion (LRR):	E		Lat: <u>48.05</u>	0145		Long:	-96.392832		I	Datum:	NAD19	83	
Soil Map Unit Name	: <u>Hecla</u>	oamy fi	ne sand						NWI class	sification:	Uplar	d	
Are climatic / hydrold	ogic conditi	ons on t	the site typical for	or this	time of year? Yes	🛛 No	🔲 (lf no, e	xplain in	Remarks.)				
Are Vegetation], Soil	X,	or Hydrology	⊠,	significantly disturbed?	? Are	e "Normal Circu	imstances	s" present?	Yes	\boxtimes	No	
Are Vegetation], Soil	□,	or Hydrology	□,	naturally problematic?	(If	needed, explair	n any ans	wers in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Pemarke:								
Wetland Hydrology Present?	Yes	\boxtimes	No	Is the Sampling Area within a Wetland?	Yes	\boxtimes	No	
Hydric Soil Present?	Yes	\boxtimes	No					
Hydrophytic Vegetation Present?	Yes	\boxtimes	No					

Remarks:

Tree Stratum (Plot Size:)	Absolute <u>% Cover</u>	Dominant Species?	Indicator Status	Dominance Test Worksheet:
1 2				Number of Dominant Species That Are OBL, FACW, or FAC: (A)
3 4				Total Number of Dominant Species Across All Strata: (B)
Sapling/Shrub Stratum (Plot Size:)		= Total Cove	er	Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B)
1				Prevalence Index worksheet:
2				Total % Cover of: Multiply by:
3				OBL species x1 =
4				FACW species x2 =
5				FAC species x3 =
		= Total Cove	er	FACU species x4 =
Herb Stratum (Plot Size: 5' radius)				UPL species x5 =
1. <u>Typha sp.</u>	<u>30</u>	X	<u>OBL</u>	Column Totals: (A) (B)
2. Ranunculus pensylvanicus	<u>20</u>	X	FACW	Prevalence Index = B/A =
3. Epilobium ciliatum	<u>20</u>	X	FACW	Hydrophytic Vegetation Indicators:
4. Cyperus esculentes	<u>15</u>		FACW	1 – Rapid Test for Hydrophytic Vegetation
5. <u>Rumex crispus</u>	<u>5</u>		FAC	2 - Dominance Test is >50%
6. Ambrosia artemisiifolia	<u>5</u>		FACU	3 – Prevalence Index is ≤3.01
7. Equisetum palustre	<u>5</u>		FACW	4 - Morphological Adaptations ¹ (Provide supporting data in
8				Remarks or on a separate sheet)
9				Problematic Hydrophytic Vegetation ¹ (Explain)
10				¹ Indicators of hydric soil and wetland hydrology must be present,
	<u>100</u>	= Total Cove	er	unless disturbed or problematic.
Woody Vine Stratum (Plot Size:)				
1				
2				
		= Total Cove	er	
% Bare Ground in Herb Stratum				Hydrophytic Vegetation Present? Yes 🛛 No 🗌
Remarks:				

SOIL Profile Desc	ription: (Describe to	the depth ne	eded to doc	ument th	e indicator	or confirm the a	hsence of in	licators)	Sampling	Point: 10	W		
Depth	Matrix				Redox Fe			licators.)					
(inches)	Color (moist)	%	Color (Mo	ist)	%	Type ¹	Loc ²	– Texture		Ren	narks		
0-4	10YR 2/2	100						L					
<u>4-13</u>	<u>2.5Y 6/2</u>	<u>90</u>	<u>2.5Y 5/4</u>	Ł	<u>10</u>	<u>C</u>	<u>M</u>	<u>S</u>					
	oncentration, D=Depl					Coated Sand G	rains. ² Locat		e Lining, M=Matrix		ric Soil	s ³ :	
					Gleyed Ma	trix (S4)			1 cm Muck (A9)	-		• •	
	Epipedon (A2)				Redox (S5	. ,			Coast Prairie Re		,	F. G. H	I)
	Histic (A3)				d Matrix (S				Dark Surface (S		, ,	, -,	,
	gen Sulfide (A4)				Mucky Mir	,			High Plains Dep	, ,	,		
	ed Layers (A5) (LRR	F)		-	Gleyed Ma				(LRR H outsi			73)	
	/luck (A9) (LRR F, G,	,			ed Matrix (F	. ,			Reduced Vertic			,	
	ed Below Dark Surfa				Dark Surfa	,			Red Parent Mat	. ,)		
	Dark Surface (A12)				ed Dark Su	()			Very Shallow D	`	,	2)	
	Mucky Mineral (S1)			•	Depression	. ,			Other (Explain i		•	_,	
2.5 CN	I Mucky Peat or Peat			High P	ains Depre	essions (F16)		³ India	cators of hydrophy plogy must be pres	tic vegeta	tion and		ıd
	Aucky Peat or Peat (S	S3) (LRR F)		(MLR	A 72 & 73	of LRR H)		probl	ematic.				
	Layer (if present):												
Гуре:													
Depth (Inche	es):							Hydr	ic Soils Present?	Yes	\boxtimes	No	[
Remarks:													
IYDROLO	GY												

vveu	and Hydrology mulca	lors.											
Prima	ary Indicators (minimun	n of one r	equired	; check	all tha	t apply)		Sec	ondary Indicators (2	or more	required)	
	Surface Water (A1)					Salt Crust (B11)			Surface Soil Crack	ks (B6)			
	High Water Table (A2	2)				Aquatic Invertebrates (B13)			Sparsely Vegetate	d Conca	ive Surfa	ce (B8)	
	Saturation (A3)					Hydrogen Sulfide Odor (C1)			Drainage Patterns	(B10)			
	Water Marks (B1)					Dry Season Water Table (C2)			Oxidized Rhizosph	neres alo	ng Living	J Roots (C3)
	Sediment Deposits (E	32)				Oxidized Rhizospheres along Living Ro	oots (C3)		(where tilled)				ſ
	Drift Deposits (B3)					(where not tilled)			Crayfish Burrows ((C8)			ſ
	Algal Mat or Crust (B4	4)				Presence of Reduced Iron (C4)			Saturation Visible	on Aeria	I Imagery	(C9)	ſ
	Iron Deposits (B5)					Thin Muck Surface (C7)		\boxtimes	Geomorphic Positi	ion (D2)			ſ
	Inundation Visible on	Aerial Im	agery (l	B7)		Other (Explain in Remarks)		\boxtimes	FAC-Neutral Test	(D5)			
	Water-Stained Lea	ves (B9))						Frost-Heave Humr	nocks (E	07) (LRR	F)	
Field	Observations:												
Surfa	ce Water Present?	Yes		No	\boxtimes	Depth (inches):							
Wate	r Table Present?	Yes		No	\boxtimes	Depth (inches):							
	ation Present? Ides capillary fringe)	Yes		No	\boxtimes	Depth (inches):	Wetla	nd Hy	drology Present?	Yes	\boxtimes	No	
Desc	ribe Recorded Data (s	tream gau	uge, mo	onitoring	g well, a	aerial photos, previous inspections), if ava	ailable:						
													l
Rem	arks:												
													l
													l

Project Site:	Black	River	Impou	Indment Site	2			С	ity/Coun	ity:	Penningt	on	Sampling	Date:	<u>8-23-</u>	2017
Applicant/Owner:	Hous	ton En	gineer	ing, Inc.							State:	MN	Sampling	Point:	<u>11w</u>	
Investigator(s):	Donn	a Jaco	b and	Mark D Aar	nenson			S	ection, 1	Township, I	Range:	<u>S24-T153</u>	N-R45W			
Landform (hillslope,	terrac	e, etc.)	: <u>d</u> i	itch bottom			Loc	al relief	(concav	ve, convex,	none):	<u>concave</u>		5	Slope (%): <u>1</u>
Subregion (LRR):	E			Lat: <u>48</u>	050358			Lon	g: <u>-96.</u>	386330		I	Datum:	NAD19	<u>83</u>	
Soil Map Unit Name	: <u>U</u>	len fine	e sand	y loam, Asp	en Parklar	nd						NWI class	sification:	Uplan	<u>d</u>	
Are climatic / hydrold	ogic co	onditior	ns on t	he site typic	al for this t	time of year?	Yes	\boxtimes	No 🗌	l (lf no, e	explain in	Remarks.)				
Are Vegetation], S	Soil	⊠,	or Hydrolog	gy ⊠,	significantly d	listurbe	d?	Are "No	ormal Circu	umstances	s" present?	Yes	\boxtimes	No	
Are Vegetation], S	Soil	□,	or Hydrolog	gy □,	naturally prob	olematio	?:	(If need	ded, explai	n any ans	wers in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Pemarke:								
Wetland Hydrology Present?	Yes	\boxtimes	No	Is the Sampling Area within a Wetland?	Yes	\boxtimes	No	
Hydric Soil Present?	Yes	\boxtimes	No					
Hydrophytic Vegetation Present?	Yes	\boxtimes	No					

Remarks:

Tree Stratum (Plot Size:)	Absolute <u>% Cover</u>	Dominant Species?	Indicator Status	Dominance Test Worksheet:
1 2				Number of Dominant Species That Are OBL, FACW, or FAC: (A)
3 4				Total Number of Dominant Species Across All Strata: (B)
Sapling/Shrub Stratum (Plot Size:)		= Total Cove	r	Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B)
1				Prevalence Index worksheet:
2				Total % Cover of: Multiply by:
3				OBL species x1 =
4				FACW species x2 =
5				FAC species x3 =
		= Total Cove	r	FACU species x4 =
Herb Stratum (Plot Size: 3' x 6')				UPL species x5 =
1. Equisetum hyemale	<u>95</u>	x	FACW	Column Totals: (A) (B)
2. Asclepias syriaca	<u>5</u>		<u>UPL</u>	Prevalence Index = B/A =
3				Hydrophytic Vegetation Indicators:
4				x 1 – Rapid Test for Hydrophytic Vegetation
5				2 - Dominance Test is >50%
6				3 – Prevalence Index is ≤3.01
7				
8				4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
9				Problematic Hydrophytic Vegetation ¹ (Explain)
10				¹ Indicators of hydric soil and wetland hydrology must be present,
	<u>100</u>	= Total Cove	r	unless disturbed or problematic.
Woody Vine Stratum (Plot Size:)				
1				
2				
		= Total Cove	r	
% Bare Ground in Herb Stratum				Hydrophytic Vegetation Present? Yes 🛛 No 🗌
Remarks:				

SOI	L										Sampling Point: 11w	
Prof	ile Descr	ription: (Describe to	the depth ne	eded to docu	iment the inc	dicator or	r confirm the	absence of inc	dicators.))		
D	Depth	Matrix			Re	edox Fea	itures		_			
(incl	hes)	Color (moist)	%	Color (Moi	st)	%	Type ¹	Loc ²	Text	ture	Remarks	
<u>(</u>	0-11	<u>2.5Y 7/2</u>	<u>85</u>	<u>2.5Y 6/6</u>	1	5	<u>C</u>	M		<u>s</u>		
_					_							
_									_			
_					_							
_									_			
_									_			
_												
_												
¹ Typ	e: C= Co	ncentration, D=Dep	letion, RM=Re	educed Matri	x, CS=Cove	red or Co	bated Sand G	rains. ² Locat	tion: PL=	Pore	e Lining, M=Matrix	
Hyd	ric Soil Ir	ndicators: (Applicat	ble to all LRRs	s, unless othe	erwise noted	l.)			Ir	ndica	ators for Problematic Hydric Soils ³ :	
	Histoso	I (A1)			Sandy Gley	ed Matri	ix (S4)		Ľ]	1 cm Muck (A9) (LRR I, J)	
	Histic E	pipedon (A2)			Sandy Red	ox (S5)			Ľ		Coast Prairie Redox (A16) (LRR F, G, H)	
	Black H	istic (A3)		\boxtimes	Stripped Ma	atrix (S6))		Ľ		Dark Surface (S7) (LRR G)	
	Hydrog	en Sulfide (A4)			Loamy Muc	cky Mine	ral (F1)		Ľ		High Plains Depressions (F16)	
	Stratifie	d Layers (A5) (LRR	F)		Loamy Gle	yed Matr	ix (F2)				(LRR H outside of MLRA 72 & 73)	
	1 cm M	uck (A9) (LRR F, G	, H)		Depleted M	latrix (F3	5)		Ľ		Reduced Vertic (F18)	
	Deplete	d Below Dark Surfa	ce (A11)		Redox Darl	k Surface	e (F6)		Ľ		Red Parent Material (TF2)	
	Thick D	ark Surface (A12)			Depleted D	ark Surfa	ace (F7)		Ľ		Very Shallow Dark Surface (TF 12)	
	Sandy I	Mucky Mineral (S1)			Redox Dep	ressions	(F8)		Ľ		Other (Explain in Remarks)	
	2.5 CM	Mucky Peat or Pea	t (S2)(LRR G ,	,H) 🛛	High Plains	Depres	sions (F16)				cators of hydrophytic vegetation and wetland plogy must be present, unless disturbed or	
	5 cm M	ucky Peat or Peat (S3) (LRR F)		(MLRA 72	2 & 73 of	LRR H)				ematic.	
Rest	trictive L	ayer (if present):										
Туре	e:											
Dept	th (Inches	s):							н	lydri	ic Soils Present? Yes 🛛 No	
Rem	narks:											
HYD	DROLOG	GY										
Wet	land Hyd	rology Indicators:										

Prima	ary Indicators (minimum	n of one re	equired	; check	all tha	t apply)		Sec	ondary Indicators (2	or more	required)	
	Surface Water (A1)					Salt Crust (B11)			Surface Soil Crack	(B6)			
	High Water Table (A2)				Aquatic Invertebrates (B13)			Sparsely Vegetate	d Conca	ve Surfa	ce (B8)	
	Saturation (A3)					Hydrogen Sulfide Odor (C1)			Drainage Patterns	(B10)			
	Water Marks (B1)					Dry Season Water Table (C2)			Oxidized Rhizosph	neres alo	ng Living	Roots (C3)
	Sediment Deposits (B	2)				Oxidized Rhizospheres along Living Roo	ots (C3)	1	(where tilled)				
	Drift Deposits (B3)					(where not tilled)			Crayfish Burrows (C8)			
	Algal Mat or Crust (B4	1)				Presence of Reduced Iron (C4)			Saturation Visible	on Aeria	I Imagery	/ (C9)	
	Iron Deposits (B5)					Thin Muck Surface (C7)		\boxtimes	Geomorphic Positi	on (D2)			
	- 6,0,0					Other (Explain in Remarks)		\boxtimes	FAC-Neutral Test	(D5)			
	Water-Stained Leaves (B9)								Frost-Heave Humr	nocks (E	07) (LRR	F)	
Field	Field Observations:												
Surfa	ce Water Present?	Yes		No	\boxtimes	Depth (inches):							
Wate	r Table Present?	Yes		No	\boxtimes	Depth (inches):							
	ation Present? des capillary fringe)	Yes		No	\boxtimes	Depth (inches):	Wet	land Hyd	drology Present?	Yes	\boxtimes	No	
Desc	ribe Recorded Data (st	tream gau	Jge, mc	onitoring	g well, a	aerial photos, previous inspections), if avai	ilable:						
Remarks:													

Project Site:	Black	River	Impou	undment S	ite			City/	County:	Penning	on	Sampling	Date:	<u>8-23-</u>	2017
Applicant/Owner:	Hous	ton En	gineer	ring, Inc.						State:	MN	Sampling	Point:	<u>12u</u>	
Investigator(s):	Donr	na Jaco	b and	Mark D Aa	anenson			Secti	ion, Township,	Range:	<u>S31-T153</u>	N-R44W			
Landform (hillslope,	terrac	e, etc.)	: <u>d</u>	itch slope			Local r	relief (co	oncave, convex,	none):	none		S	lope (%): <u>5</u>
Subregion (LRR):	E			Lat: 4	48.028426			Long:	-96.370972			Datum:	NAD19	<u>83</u>	
Soil Map Unit Name	: <u>R</u>	oliss lo	am								NWI class	sification:	Uplan	<u>d</u>	
Are climatic / hydrold	ogic co	onditior	ns on t	he site typ	ical for this	time of year?	Yes 🛛	🛛 No	🔲 (lf no, e	explain in	Remarks.)				
Are Vegetation], 8	Soil	⊠,	or Hydrol	ogy 🛛,	significantly d	isturbed?	Ar	re "Normal Circi	umstance	s" present?	Yes	\boxtimes	No	
Are Vegetation], 8	Soil	□,	or Hydrol	ogy □,	naturally prob	lematic?	(If	needed, explai	n any ans	wers in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Remarks:					is the Sampling Area within a wettand?	res	NO	
Wetland Hydrology Present?	Yes		No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes
Hydric Soil Present?	Yes	\boxtimes	No					
Hydrophytic Vegetation Present?	Yes		No	\boxtimes				

Remarks:

Tree Stratum (Plot Size:)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test Worksheet:		
1 2				Number of Dominant Species That Are OBL, FACW, or FAC:	<u>0</u>	(A)
3 4				Total Number of Dominant Species Across All Strata:	1	(B)
Sapling/Shrub Stratum (Plot Size:)		= Total Cove	er	Percent of Dominant Species That Are OBL, FACW, or FAC:	<u>0</u>	(A/B)
1				Prevalence Index worksheet:		
2				Total % Cover of:	Multiply b	<u>y:</u>
3				OBL species	x1 =	
4				FACW species	x2 =	
5				FAC species	x3 =	
		= Total Cove	er	FACU species	x4 =	
Herb Stratum (Plot Size: 5' radius)				UPL species	x5 =	
1. Bromus inermis	<u>70</u>	<u>×</u>	<u>UPL</u>	Column Totals:	(A)	(B)
2. Lotus corniculatus	<u>10</u>		FACU	Prevalence In	ndex = B/A =	·
3. <u>Cirsium arvense</u>	<u>5</u>		FACU	Hydrophytic Vegetation Indica	tors:	
4. <u>Poa pratensis</u>	<u>5</u>		FACU	1 – Rapid Test for Hy	/drophytic V	egetation
5. Taraxacum officinale	<u>5</u>		FACU	2 - Dominance Test i	s >50%	
6. Typha sp.	<u>5</u>		<u>OBL</u>	3 – Prevalence Index	cis ≤3.01	
7					antations1 (I	Provide supporting data in
8				Remarks or on a		
9				Problematic Hydroph	ytic Vegeta	tion ¹ (Explain)
10				¹ Indicators of hydric soil and wet	land hydrold	ogy must be present,
	<u>100</u>	= Total Cove	er	unless disturbed or problematic.		
Woody Vine Stratum (Plot Size:)						
1						
2						
		= Total Cove	er			
% Bare Ground in Herb Stratum				Hydrophytic Vegetation Prese	nt? Yes	5 🗌 No 🖾
Remarks:						

SOI	L									Sampling	Point: 12	L		
Prof	ile Descri	ption: (Describe to	o the depth nee	eded to docu	ument the i	ndicator	or confirm the a	absence of inc	licators.)					
C	Depth	Matrix			F	Redox Fe	eatures		_					
(incl	hes)	Color (moist)	%	Color (Mo	st)	%	Type ¹	Loc ²	Texture	<u> </u>	Ren	narks		
	<u>0-3</u>	<u>2.5Y 2/1</u>	100		_				CL					
1	<u>3-12</u>	<u>2.5Y 5/1</u>	<u>70</u>	<u>2.5Y 5/4</u>		<u>30</u>	<u>C</u>	M	<u>C</u>					
_					_									
_					_									
-					_									
-					_									
_					_									
-					_									
1Тур	e: C= Con	centration, D=Dep	oletion, RM=Re	educed Matri	x, CS=Cov	ered or (Coated Sand G	rains. ² Locat	ion: PL=Poi	re Lining, M=Matrix				
Hyd	ric Soil In	dicators: (Applica	ble to all LRRs	s, unless oth	erwise note	ed.)			India	cators for Problen	natic Hyd	ric Soils	S ³ :	
	Histosol	(A1)			Sandy Gle	eyed Mat	trix (S4)			1 cm Muck (A9)	(LRR I, J)		
	Histic Ep	oipedon (A2)			Sandy Re	dox (S5))			Coast Prairie Re	edox (A16) (LRR	F, G, H)
	Black Hi	stic (A3)			Stripped N	/latrix (S	6)			Dark Surface (S	7) (LRR G	3)		
	Hydroge	n Sulfide (A4)			Loamy Mu	ucky Min	eral (F1)			High Plains Dep	ressions (F16)		
	Stratified	d Layers (A5) (LRF	R F)		Loamy Gl	eyed Ma	ıtrix (F2)			(LRR H outsid	de of MLF	RA 72 &	73)	
	1 cm Mu	ick (A9) (LRR F, G	6, H)		Depleted	Matrix (F	-3)			Reduced Vertic	(F18)			
	Depleted	d Below Dark Surfa	ace (A11)		Redox Da	rk Surfa	ce (F6)			Red Parent Mat	erial (TF2))		
	Thick Da	ark Surface (A12)			Depleted	Dark Su	rface (F7)			Very Shallow Da	ark Surfac	e (TF 12	2)	
	Sandy M	lucky Mineral (S1)			Redox De	pression	ns (F8)			Other (Explain i		'		
	2.5 CM I	Mucky Peat or Pea	at (S2)(LRR G,	H) 🗌	High Plair	is Depre	ssions (F16)			cators of hydrophy ology must be pres				d
	5 cm Mu	icky Peat or Peat ((S3) (LRR F)		(MLRA 7	2 & 73 0	of LRR H)			lematic.			000 01	
Rest	trictive La	yer (if present):												
Туре	e:													
Dept	th (Inches)):							Hyd	ric Soils Present?	Yes	\boxtimes	No	
Rem	narks:													
HYD	DROLOG	iΥ												

Wetl	and Hydrology Indica	tors:											
Prim	ary Indicators (minimun	n of one r	equired	; check	all tha	t apply)		Sec	ondary Indicators (2	or more	required)	
	Surface Water (A1)					Salt Crust (B11)			Surface Soil Crack	ks (B6)			
	High Water Table (A2	2)				Aquatic Invertebrates (B13)			Sparsely Vegetate	ed Conca	ave Surfa	ce (B8)	
	Saturation (A3)					Hydrogen Sulfide Odor (C1)			Drainage Patterns	s (B10)			
	Water Marks (B1)					Dry Season Water Table (C2)			Oxidized Rhizospl	heres ald	ong Living	g Roots (C3)
	Sediment Deposits (E	32)				Oxidized Rhizospheres along Living Roc	ots (C3)	(where tilled)				
	Drift Deposits (B3)					(where not tilled)			Crayfish Burrows	(C8)			
	Algal Mat or Crust (B4	4)				Presence of Reduced Iron (C4)			Saturation Visible	on Aeria	al Imager	y (C9)	
	Iron Deposits (B5)					Thin Muck Surface (C7)			Geomorphic Posit	ion (D2)			
	Inundation Visible on	Aerial Im	agery (l	B7)		Other (Explain in Remarks)			FAC-Neutral Test	(D5)			
	Water-Stained Lea	ves (B9)						Frost-Heave Hum	mocks (I	D7) (LRR	(F)	
Field	Observations:		-										
Surfa	ace Water Present?	Yes		No	\boxtimes	Depth (inches):							
Wate	r Table Present?	Yes		No	\boxtimes	Depth (inches):							
	ration Present? Ides capillary fringe)	Yes		No	\boxtimes	Depth (inches):	We	tland Hy	drology Present?	Yes		No	\boxtimes
Desc	ribe Recorded Data (s	tream ga	uge, mo	onitoring	g well,	aerial photos, previous inspections), if avai	ilable:						
Rem	arks:												

Project Site:	Blac	k River	Impou	Indment Si	ite			City	/County:	Penningt	on	Sampling	Date:	<u>8-23-</u>	2017
Applicant/Owner:	Hous	ston En	gineer	ing, Inc.						State:	MN	Sampling	Point:	<u>12w</u>	
Investigator(s):	Donr	na Jaco	b and	Mark D Aa	anenson			Sect	tion, Township, I	Range:	<u>S31-T153</u>	N-R44W			
Landform (hillslope,	terrac	ce, etc.)	: <u>d</u> i	itch bottom	<u>n</u>		Local	relief (co	oncave, convex,	none):	concave		S	lope (%): <u>1</u>
Subregion (LRR):	E	-		Lat: 4	48.028526			Long:	-96.370961			Datum:	NAD198	<u>83</u>	
Soil Map Unit Name	: <u>F</u>	Roliss Ic	<u>am</u>								NWI class	sification:	Uplan	<u>d</u>	
Are climatic / hydrold	ogic c	onditior	ns on t	he site typ	ical for this	time of year?	Yes [No No) 🗌 (If no, e	explain in	Remarks.)				
Are Vegetation], \$	Soil	⊠,	or Hydrole	ogy 🛛,	significantly d	isturbed?	A	re "Normal Circu	umstances	s" present?	Yes	\boxtimes	No	
Are Vegetation], 3	Soil	□,	or Hydrole	ogy □,	naturally prob	lematic?	(1	f needed, explai	n any ans	wers in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Pomarke:								
Wetland Hydrology Present?	Yes	\boxtimes	No	Is the Sampling Area within a Wetland?	Yes	\boxtimes	No	
Hydric Soil Present?	Yes	\boxtimes	No					
Hydrophytic Vegetation Present?	Yes	\boxtimes	No					

Remarks:

Tree S	Stratum (Plot Size:)	Absolute <u>% Cover</u>	Dominant Species?	Indicator <u>Status</u>	Dominance Test Worksheet:
1 2					Number of Dominant Species That Are OBL, FACW, or FAC: <u>4</u> (A)
3. 4.					Total Number of Dominant Species Across All Strata: <u>4</u> (B)
<u>Saplin</u>	g/Shrub Stratum (Plot Size:)		= Total Cover		Percent of Dominant Species That Are OBL, FACW, or FAC: <u>100</u> (A/B)
1.					Prevalence Index worksheet:
2.					Total % Cover of: Multiply by:
3.					OBL species x1 =
4.					FACW species x2 =
5.					FAC species x3 =
			= Total Cover		FACU species x4 =
Herb S	<u>Stratum (</u> Plot Size: <u>4' x 6'</u>)				UPL species x5 =
1. [Rumex crispus	<u>20</u>	X	FAC	Column Totals: (A) (B)
2.	Typha sp.	<u>10</u>	x	<u>OBL</u>	Prevalence Index = B/A =
3.	Hordeum jubatum	<u>10</u>	X	FACW	Hydrophytic Vegetation Indicators:
4.	Beckmannia syzigachne	<u>10</u>	x	<u>OBL</u>	1 – Rapid Test for Hydrophytic Vegetation
5.	Eleocharis palustris	<u>5</u>		<u>OBL</u>	x 2 - Dominance Test is >50%
6.	Alisma subcordatum	<u>5</u>		<u>OBL</u>	3 – Prevalence Index is ≤3.0¹
7.					4 - Morphological Adaptations ¹ (Provide supporting data in
8.					Remarks or on a separate sheet)
9.					Problematic Hydrophytic Vegetation ¹ (Explain)
10.					¹ Indicators of hydric soil and wetland hydrology must be present,
		<u>60</u>	= Total Cover		unless disturbed or problematic.
Wood	<u>y Vine Stratum (</u> Plot Size:)				
1					
2					
			= Total Cover		
% Bar	e Ground in Herb Stratum 40				Hydrophytic Vegetation Present? Yes 🛛 No 🗌
Remar	ks:				

SOI	L									Sampling P	oint: 12v	v		
Prof	ile Descri	ption: (Describe to	o the depth nee	eded to docu	ument th	e indicato	or or confirm the	absence of inc	dicators.)					
C	Depth	Matrix				Redox	Features		_					
(incl	hes)	Color (moist)	%	Color (Mo	ist)	%	Type ¹	Loc ²	 Texture		Rem	arks		
	<u>0-6</u>	<u>2.5Y 2/1</u>	100						L					
9	<u>6-12</u>	<u>2.5Y 6/2</u>	<u>90</u>	<u>2.5Y 5/6</u>		<u>10</u>	<u>C</u>	M	<u>CL</u>					
_														
_														
_														
_														
_														
_														
¹Тур	e: C= Cor	centration, D=Dep	oletion, RM=Re	duced Matri	x, CS=C	overed o	r Coated Sand	Grains. ² Locat	tion: PL=Por	e Lining, M=Matrix				
Hyd	ric Soil In	dicators: (Applica	ble to all LRRs	, unless oth	erwise n	oted.)			Indic	ators for Problema	tic Hydı	ic Soils	s ³ :	
	Histic Ep	pipedon (A2)				Coast Prairie Red	ox (A16)	(LRR	F, G, H)				
	Black Hi	stic (A3)			Strippe	d Matrix ((S6)			Dark Surface (S7)	(LRR G)		
	Hydroge	n Sulfide (A4)			Loamy	Mucky M	lineral (F1)			High Plains Depre	ssions (F16)		
	Stratified	d Layers (A5) (LRF	R F)		Loamy	Gleyed N	Matrix (F2)			(LRR H outside	of MLR	A 72 &	73)	
	1 cm Mu	ick (A9) (LRR F, G	6, H)	\boxtimes	Deplete	ed Matrix	(F3)			Reduced Vertic (F	18)			
	Depleted	d Below Dark Surfa	ace (A11)		Redox	Dark Sur	face (F6)			Red Parent Mater	ial (TF2)			
	Thick Da	ark Surface (A12)			Deplete	ed Dark S	Surface (F7)			Very Shallow Dark	Surface	e (TF 12	2)	
	Sandy M	lucky Mineral (S1))		Redox	Depressi	ons (F8)			Other (Explain in F	Remarks)		
	2.5 CM I	Mucky Peat or Pea	at (S2)(LRR G,	H) 🗆	High Pl	ains Dep	ressions (F16)			cators of hydrophytic plogy must be preser				d
	5 cm Mu	icky Peat or Peat ((S3) (LRR F)		(MLR	A 72 & 73	3 of LRR H)		,	ematic.	n, unics	suistuii		
Rest	trictive La	yer (if present):												
Туре	e:													
Dept	th (Inches)):							Hydr	ic Soils Present?	Yes	\boxtimes	No	
Rem	narks:								• •					
HYD	DROLOG	iΥ												

Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Secondary Indicators (2 or more required) Surface Water (A1) Salt Crust (B11) Surface Soil Cracks (B6) High Water Table (A2) Sparsely Vegetated Concave Surface (B8) Aquatic Invertebrates (B13) Saturation (A3) Hydrogen Sulfide Odor (C1) Drainage Patterns (B10) Water Marks (B1) Dry Season Water Table (C2) Oxidized Rhizospheres along Living Roots (C3) Sediment Deposits (B2) Oxidized Rhizospheres along Living Roots (C3) (where tilled) Drift Deposits (B3) (where not tilled) Crayfish Burrows (C8) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Saturation Visible on Aerial Imagery (C9) Iron Deposits (B5) Thin Muck Surface (C7) \boxtimes Geomorphic Position (D2) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) \boxtimes FAC-Neutral Test (D5) Frost-Heave Hummocks (D7) (LRR F) Water-Stained Leaves (B9) Field Observations: Surface Water Present? Yes No \boxtimes Depth (inches): Water Table Present? Yes No \boxtimes Depth (inches): Saturation Present? Yes No \boxtimes Depth (inches): Wetland Hydrology Present? Yes \boxtimes No (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Remarks:

Project Site:	Black Riv	er Impou	undment Site			City	//County:	Penning	on	Sampling	Date:	<u>8-23-</u>	2017
Applicant/Owner:	Houston	Engineer	ing, Inc.					State:	MN	Sampling	Point:	<u>13u</u>	
Investigator(s):	Donna Ja	acob and	Mark D Aane	nson		Sec	tion, Township,	Range:	<u>S31-T153</u>	N-R44W			
Landform (hillslope,	terrace, et	tc.): <u>d</u>	itch slope		Lo	cal relief (c	concave, convex,	none):	none		S	lope (%): <u>5</u>
Subregion (LRR):	E		Lat: <u>48.0</u>	30392		Long:	-96.370995			Datum:	NAD198	33	
Soil Map Unit Name	: <u>Roliss</u>	<u>loam</u>							NWI class	sification:	Uplan	<u>d</u>	
Are climatic / hydrold	ogic condit	tions on t	he site typical	for this	time of year? Yes	🛛 No	o 🔲 (Ifno,e	explain in	Remarks.)				
Are Vegetation], Soil	X,	or Hydrology	X,	significantly disturbe	ed? ₽	Are "Normal Circo	umstance	s" present?	Yes	\boxtimes	No	
Are Vegetation], Soil	□,	or Hydrology	□,	naturally problemati	c? (lf needed, explai	n any ans	wers in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes		No	\boxtimes					
Hydric Soil Present?	Yes	\boxtimes	No						
Wetland Hydrology Present?	Yes		No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes	
Remarks [.]									

Remarks:

1	Tree Stratum (Plot Size:)	Absolute <u>% Cover</u>	Dominant Species?	Indicator Status	Dominance Test V	Norksheet:				
4.							<u>0</u>	(A)		
Saping/Shrub Stratum (Plot Size:	3 4						<u>1</u>	(B)		
2.	Sapling/Shrub Stratum (Plot Size:)		= Total Cove	۶r			<u>0</u>	(A/B)		
3.	1				Prevalence Index	worksheet:				
4.	2				Total % Cov	ver of:	Multiply	<u>by:</u>		
5.	3				OBL species	<u>0</u>	x1 =	<u>o</u>		
Herb Stratum (Plot Size: 5' radius) FACU species 10 x4 = 40 UPL species 75 x5 = 375 1. Bromus inermis 75 x UPL 2. Poa pratensis 10 FACU Prevalence Index = B/A = 4.5 3. Lotus corniculatus 5 FACU Prevalence Index = B/A = 4.5 4. Spartina pectinata 5 FACW 1 - Rapid Test for Hydrophytic Vegetation 5. Equisetum hyemale 5 FACW 2 - Dominance Test is >50% 6.	4				FACW species	<u>15</u>	x2 =	<u>30</u>		
Herb Stratum (Plot Size: 5' radius) UPL species 75 x5 375 1. Bromus inermis 75 x UPL Column Totals: 100 (A) 445 (B) 2. Poa pratensis 10 FACU Prevalence Index = B/A = 4.5 Image: Stratum (Plot Size: 5) Image: Stratum (Plot Size: 5) FACU Hydrophytic Vegetation Indicators: Image: Stratum (Plot Size: 50% Image: Stratum (Plot Size: 50% Image: Stratum (Plot Size: 5) Image: Stratum (Plot Size: 2) Image: Stratum (Plot Size: 2)	5				FAC species	<u>0</u>	x3 =	<u>0</u>		
1. Bromus inermis 75 x UPL Column Totals: 100 (A) 445 (B) 2. Poa pratensis 10			= Total Cove	er	FACU species	<u>10</u>	x4 =	<u>40</u>		
2. Poa pratensis 10	<u>Herb Stratum (</u> Plot Size: <u>5' radius</u>)				UPL species	<u>75</u>	x5 =	<u>375</u>		
3. Lotus corniculatus 5 FACU Hydrophytic Vegetation Indicators: 4. Spartina pectinata 5 FACW 1 - Rapid Test for Hydrophytic Vegetation 5. Equisetum hyemale 5 FACW 2 - Dominance Test is >50% 6.	1. Bromus inermis	<u>75</u>	X	UPL	Column Totals:	<u>100</u>	(A)	<u>445</u>	(B)	
4. Spartina pectinata 5 FACW 1 - Rapid Test for Hydrophytic Vegetation 5. Equisetum hyemale 5 FACW 2 - Dominance Test is >50% 6	2. <u>Poa pratensis</u>	<u>10</u>		FACU		Prevalence	Index = B	/A = <u>4.5</u>		
5. Equisetum hyemale 5 FACW 2 - Dominance Test is >50% 6	3. Lotus corniculatus	<u>5</u>		FACU	Hydrophytic Vege	tation Indica	tors:			
6.	4. Spartina pectinata	<u>5</u>		FACW	1 – Raj	oid Test for Hy	/drophytic	Vegetation	ı	
7	5. Equisetum hyemale	<u>5</u>		FACW	2 - Don	ninance Test i	s >50%			
7.	6				3 – Pre	valence Index	cis ≤3.0¹			
8	7							(Provide e	upporting	tata in
10.	8								upporting	
100 = Total Cover unless disturbed or problematic. 1.	9				Probler	matic Hydroph	ytic Vege	tation ¹ (Exp	olain)	
Woody Vine Stratum (Plot Size:)	10				¹ Indicators of hydri	c soil and wet	land hydro	ology must	be present	
1		<u>100</u>	= Total Cove	er	unless disturbed or	problematic.	,	0,	•	·
2	Woody Vine Stratum (Plot Size:)									
Bare Ground in Herb Stratum Total Cover Hydrophytic Vegetation Present? Yes	1									
% Bare Ground in Herb Stratum Hydrophytic Vegetation Present? Yes I No I	2									
			= Total Cove	er						
Remarks:	% Bare Ground in Herb Stratum				Hydrophytic Vege	etation Prese	nt? Y	es 🗌	No	\boxtimes
	Remarks:									

SOI	L									Sampling P	oint: 13u		
Prof	ile Descri	ption: (Describe to	o the depth ne	eeded to docu	ument the indic	cator or confiri	m the abse	nce of ind	icators.)				
C	Depth	Matrix			Red	ox Features			_				
(incl	hes)	Color (moist)	%	Color (Mo	ist) %	Тур	e ¹	Loc ²	Texture		Remar	ks	
	<u>0-7</u>	<u>2.5Y 2/1</u>	100						Ŀ				
1	<u>7-13</u>	<u>2.5Y 6/1</u>	<u>90</u>	<u>2.5Y 5/6</u>	<u>10</u>	<u>C</u>		M	<u>C</u>				
_													
_													
_													
_													
_													
_													
1Тур	e: C= Cor	centration, D=Dep	oletion, RM=R	Reduced Matri	ix, CS=Covere	d or Coated S	and Grains	s. ² Locati	on: PL=Por	e Lining, M=Matrix			
Hyd	Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Indicators for Problematic Hydric Soils ³ : Histosol (A1) Sandy Gleyed Matrix (S4) I cm Muck (A9) (LRR I, J)												
	Histic Ep	pipedon (A2)		Coast Prairie Red	ox (A16) (L	RR F, G	, H)						
	Black Hi	stic (A3)			Stripped Mate	rix (S6)				Dark Surface (S7)	(LRR G)		
	Hydroge	n Sulfide (A4)			Loamy Muck	y Mineral (F1)				High Plains Depre	ssions (F1	6)	
	Stratified	d Layers (A5) (LRF	R F)		Loamy Gleye	d Matrix (F2)				(LRR H outside	of MLRA	72 & 73)	
	1 cm Mu	ick (A9) (LRR F, G	6, H)	\boxtimes	Depleted Mat	trix (F3)				Reduced Vertic (F	18)		
	Depleted	d Below Dark Surfa	ace (A11)		Redox Dark S	Surface (F6)				Red Parent Materi	al (TF2)		
	Thick Da	ark Surface (A12)			Depleted Dar	k Surface (F7)			Very Shallow Dark	,	TF 12)	
	Sandy M	lucky Mineral (S1)	1		Redox Depre	. ,				Other (Explain in F	,		
	2.5 CM I	Mucky Peat or Pea	at (S2)(LRR G	G, H) 🛛	High Plains D	Depressions (F	-16)			ators of hydrophytic			
		icky Peat or Peat ((S3) (LRR F)		(MLRA 72 8	§ 73 of LRR H	1)			ematic.	,		-
Rest	trictive La	iyer (if present):											
	Туре:												
Dept	th (Inches)):							Hydr	ic Soils Present?	Yes		0
Rem	arks:												
HYE	DROLOG	iΥ											

Wetl	and Hydrology Indica	tors:											
Prim	ary Indicators (minimun	n of one r	equired	; check	all tha	t apply)		Sec	ondary Indicators (2	or more	required)	
	Surface Water (A1)					Salt Crust (B11)			Surface Soil Crack	ks (B6)			
	High Water Table (A2	2)				Aquatic Invertebrates (B13)			Sparsely Vegetate	ed Conca	ave Surfa	ce (B8)	
	Saturation (A3)					Hydrogen Sulfide Odor (C1)			Drainage Patterns	s (B10)			
	Water Marks (B1)					Dry Season Water Table (C2)			Oxidized Rhizospl	heres ald	ong Living	g Roots (C3)
	Sediment Deposits (E	32)				Oxidized Rhizospheres along Living Roo	ots (C3))	(where tilled)				
	Drift Deposits (B3)					(where not tilled)			Crayfish Burrows	(C8)			
	Algal Mat or Crust (B4	4)				Presence of Reduced Iron (C4)			Saturation Visible	on Aeria	al Imagery	(C9)	
	Iron Deposits (B5)					Thin Muck Surface (C7)			Geomorphic Posit	ion (D2)			
	Inundation Visible on	Aerial Im	agery (l	B7)		Other (Explain in Remarks)			FAC-Neutral Test	(D5)			
	Water-Stained Lea	ives (B9)						Frost-Heave Hum	mocks (l	D7) (LRR	F)	
Field	Observations:												
Surfa	ace Water Present?	Yes		No	\boxtimes	Depth (inches):							
Wate	r Table Present?	Yes		No	\boxtimes	Depth (inches):							
	ration Present? Ides capillary fringe)	Yes		No	\boxtimes	Depth (inches):	We	tland Hy	drology Present?	Yes		No	\boxtimes
Desc	ribe Recorded Data (s	tream ga	uge, mo	nitoring	g well,	aerial photos, previous inspections), if ava	ilable:						
Rem	arks:												

Project Site:	Black I	River Impo	undment Site	e		City/County: Penning				-	Sampling	Date:	<u>8-23-</u>	2017
Applicant/Owner:	Housto	n Enginee	ring, Inc.					Stat	e: <u>M</u>	N	Sampling	Point:	<u>13w</u>	
Investigator(s):	Donna	Jacob and	Mark D Aar	nenson		Se	ction, Towr	nship, Rang	je: <u>S3</u>	31-T153	N-R44W			
Landform (hillslope,	terrace,	etc.): <u>c</u>	ditch bottom		Lo	cal relief (concave, c	onvex, none	e): <u>co</u>	ncave		5	Slope (%): <u>1</u>
Subregion (LRR):	E		Lat: <u>48</u>	3.030535		Long:	-96.371	006		I	Datum:	NAD19	83	
Soil Map Unit Name	: <u>Ro</u> l	iss loam							N	WI class	sification:	Uplan	d	
Are climatic / hydrold	ogic con	ditions on	the site typic	cal for this t	time of year? Yes	🛛 N	lo 🗌 (If no, explai	in in Rei	marks.)				
Are Vegetation], So	il 🛛,	or Hydrolog	gy 🖾,	significantly disturb	ed?	Are "Norma	al Circumsta	ances" p	present?	Yes	\boxtimes	No	
Are Vegetation], So	il □,	or Hydrolog	gy □,	naturally problemat	ic?	(If needed,	explain any	y answe	rs in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Wetland Hydrology Present?	Yes	\boxtimes	No	Is the Sampling Area within a Wetland?	Yes	\boxtimes	No	
				Is the Sompling Area within a Watland?	Vaa		No	
Hydric Soil Present?	Yes		No					
Hydrophytic Vegetation Present?	Yes	\boxtimes	No					

Remarks:

Tree Stratum (Plot Size:)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test Worksheet:
1 2				Number of Dominant Species That Are OBL, FACW, or FAC: (A)
3 4				Total Number of Dominant Species Across All Strata: (B)
Sapling/Shrub Stratum (Plot Size:)		= Total Cove	r	Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B)
1				Prevalence Index worksheet:
2				Total % Cover of: Multiply by:
3				OBL species x1 =
4				FACW species x2 =
5				FAC species x3 =
		= Total Cove	r	FACU species x4 =
Herb Stratum (Plot Size: 5' radius)				UPL species x5 =
1. <u>Typha sp.</u>	<u>50</u>	X	<u>OBL</u>	Column Totals: (A) (B)
2. Spartina pectinata	<u>20</u>	x	FACW	Prevalence Index = B/A =
3. <u>Poa pratensis</u>	<u>10</u>		FACU	Hydrophytic Vegetation Indicators:
4. Taraxacum officinale	<u>10</u>		FACU	x 1 – Rapid Test for Hydrophytic Vegetation
5. Bromus inermis	<u>5</u>		<u>UPL</u>	2 - Dominance Test is >50%
6. Persicaria amphibia	<u>5</u>		<u>OBL</u>	3 – Prevalence Index is ≤3.0 ¹
7				 4 - Morphological Adaptations¹ (Provide supporting data in
8				Remarks or on a separate sheet)
9				Problematic Hydrophytic Vegetation ¹ (Explain)
10				¹ Indicators of hydric soil and wetland hydrology must be present,
	<u>100</u>	= Total Cove	r	unless disturbed or problematic.
Woody Vine Stratum (Plot Size:)				
1				
2				
		= Total Cove	r	
% Bare Ground in Herb Stratum				Hydrophytic Vegetation Present? Yes 🛛 No 🗌
Remarks:				

Sampling Point: 13w

Profile Des	cription: (Describ	e to the	depth r	needed	to doc	ument the i	indicator	or confirm the a	absence	of indicate	ors.)			
Depth	Matr	rix				I	Redox Fe	atures						
(inches)	Color (moist)		%	Co	lor (Mo	ist)	%	Type ¹	Loc ²	<u>.</u> .	Textur	re Remarks		
0-5	10YR 2/1		100								CL			
<u>5-13</u>	2.5Y 5/1		90	2	2.5Y 5/4		10	<u>C</u>	M		C			
		_				-				_				
		_				-								
		_				-				_				
		_				-				_				
		_				-								
¹ Type: C= C	Concentration D=) Denletio	n RM=	Reduce			vered or (Coated Sand G	rains ² l		PI =Pr	 pre Lining, M=Matrix		
	I Indicators: (Appl											icators for Problematic Hydric Soils ³ :		
_	sol (A1)			rto, um		Sandy Gl		trix (S4)				1 cm Muck (A9) (LRR I, J)		
_	Epipedon (A2)					Sandy Re	-					Coast Prairie Redox (A16) (LRR F, G, H)		
_						-								
	Histic (A3)					Stripped	-				_	Dark Surface (S7) (LRR G)		
	ogen Sulfide (A4)					Loamy M	-					High Plains Depressions (F16)		
_	fied Layers (A5) (L					Loamy G	-				_	(LRR H outside of MLRA 72 & 73)		
	Muck (A9) (LRR F	,				Depleted Redox Da	-	-				Reduced Vertic (F18)		
	eted Below Dark S		A11)						Red Parent Material (TF2)					
_												Very Shallow Dark Surface (TF 12)		
												Other (Explain in Remarks) dicators of hydrophytic vegetation and wetland		
												rology must be present, unless disturbed or		
			(LRR F)				blematic.							
	Layer (if present):												
Туре:														
Depth (Inch	es):										Нус	dric Soils Present? Yes 🛛 No 🗌		
Remarks:														
HYDROLO	OGY													
Wetland Hy	drology Indicato	rs:												
Primary Ind	icators (minimum	of one re	equired	, check	all that	apply)					Seco	ndary Indicators (2 or more required)		
Surfa	ace Water (A1)					Salt Crus	t (B11)					Surface Soil Cracks (B6)		
🗌 High	Water Table (A2)					Aquatic I	nvertebra	tes (B13)				Sparsely Vegetated Concave Surface (B8)		
Satur	ration (A3)					Hydroger	n Sulfide	Odor (C1)				Drainage Patterns (B10)		
□ Wate	er Marks (B1)					Dry Seas	on Water	Table (C2)				Oxidized Rhizospheres along Living Roots (C3)		
Sedir	ment Deposits (B2)				Oxidized	Rhizosph	neres along Liv	ing Roots	s (C3)		(where tilled)		
Drift I	Deposits (B3)					(where n	ot tilled)					Crayfish Burrows (C8)		
	Mat or Crust (B4)					Presence	of Redu	ced Iron (C4)				Saturation Visible on Aerial Imagery (C9)		
	Deposits (B5)					Thin Muc	k Surface	e (C7)			\boxtimes	Geomorphic Position (D2)		
	dation Visible on A	erial Im	agery (F	37)		Other (E)					\boxtimes	FAC-Neutral Test (D5)		
	er-Stained Leave			'	_			- /				Frost-Heave Hummocks (D7) (LRR F)		
	Field Observations:													
	Surface Water Present? Yes No I Depth (inches):													
Water Table		Yes		No			h (inches	,						
Saturation F					_	•	,							
	apillary fringe)	Yes		No	\boxtimes	Dept	h (inches	s):		Wetlan	d Hyd	rology Present? Yes 🛛 No 🗌		
Describe R	escribe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:													
Remarks:														

Project Site:	Blac	k River	Impou	undment Si	ite		City/County: Penning				on	Sampling	Date:	<u>8-23-</u>	2017
Applicant/Owner:	Hous	ston En	gineer	ing, Inc.						State:	MN	Sampling	Point:	<u>14u</u>	
Investigator(s):	Donr	na Jaco	b and	Mark D Aa	anenson			Section	on, Township, I	Range:	<u>S31-T153</u>	N-R44W			
Landform (hillslope,	terrac	e, etc.)	: <u>d</u>	itch slope			Local re	elief (co	ncave, convex,	none):	none		S	lope (%): <u>5</u>
Subregion (LRR):	E			Lat: 4	8.028236			Long:	-96.360243			Datum:	NAD19	<u>83</u>	
Soil Map Unit Name	: <u>F</u>	Roliss Ic	<u>am</u>								NWI class	sification:	Uplan	<u>d</u>	
Are climatic / hydrold	ogic c	onditior	ns on t	he site typi	ical for this	time of year?	Yes 🛛	No	🔲 (lf no, e	explain in	Remarks.)				
Are Vegetation], \$	Soil	⊠,	or Hydrold	ogy 🛛,	significantly di	isturbed?	Are	e "Normal Circu	umstances	s" present?	Yes	\boxtimes	No	
Are Vegetation], 3	Soil	□,	or Hydrold	ogy □,	naturally prob	lematic?	(If	needed, explai	n any ans	wers in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present?	Yes Yes	No No	\boxtimes					
Wetland Hydrology Present?	Yes	No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	\boxtimes	No	
Remarks:								

Remarks:

Tree Stratum (Plot Size:)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test Worksheet:				
1				Number of Dominant Species	<u>0</u>	(A)		
2				That Are OBL, FACW, or FAC:	-	()		
3				Total Number of Dominant Species Across All Strata:	1	(B)		
4								
Sapling/Shrub Stratum (Plot Size:)		= Total Cove	ſ	Percent of Dominant Species That Are OBL, FACW, or FAC:	<u>0</u>	(A/B)		
1				Prevalence Index worksheet:				
2				Total % Cover of:	Multiply b	<u>y:</u>		
3.				OBL species	x1 =			
4.				FACW species	x2 =			
5				FAC species	x3 =			
		= Total Cove	r	FACU species	x4 =			
Herb Stratum (Plot Size: 5' radius)				UPL species	x5 =			
1. Bromus inermis	<u>95</u>	x	<u>UPL</u>	Column Totals:	(A)		(B)	
2. Asclepias syriaca	<u>5</u>		UPL	Prevalence In	dex = B/A =			
3				Hydrophytic Vegetation Indica	tors:			
4				1 – Rapid Test for Hy	drophytic Ve	egetation		
5				2 - Dominance Test is	s >50%			
6				3 – Prevalence Index	is ≤3.0¹			
7				4 - Morphological Ada	antations1 (E	Provide su	nnorting d	ata in
8				Remarks or on a			pporting d	
9				Problematic Hydroph	ytic Vegetat	ion ¹ (Expl	ain)	
10				¹ Indicators of hydric soil and wetl	and hydrolo	gy must b	e present,	
	<u>100</u>	= Total Cove	r	unless disturbed or problematic.			•	
Woody Vine Stratum (Plot Size:)								
1								
2								
		= Total Cove						
% Bare Ground in Herb Stratum				Hydrophytic Vegetation Preser	nt? Yes		No	\boxtimes
Remarks:								
Mowed.								

SOIL								Sampling Point: 14u
Profile Desc	cription: (Describe to	o the depth ne	eded to doci	ument the indicato	or or confirm the	absence of indi	cators.)	
Depth	Matrix			Redox F	eatures			
(inches)	Color (moist)	%	Color (Mo	ist) %	Type ¹	Loc ²	Textu	re Remarks
<u>0-5</u>	<u>10YR 2/1</u>	<u>100</u>					L	·
<u>5-13</u>	<u>2.5Y 4/2</u>	<u>100</u>					<u>S</u>	<u> </u>
¹ Type: C= C	oncentration, D=Dep	letion, RM=Re	educed Matri	ix, CS=Covered or	Coated Sand G	arains. ² Locatio	on: PL=P	ore Lining, M=Matrix
Hydric Soil	Indicators: (Applical	ble to all LRR	s, unless oth	erwise noted.)			Inc	licators for Problematic Hydric Soils ³ :
Histos	ol (A1)			Sandy Gleyed M	latrix (S4)			1 cm Muck (A9) (LRR I, J)
Histic	Epipedon (A2)			Sandy Redox (S	5)			Coast Prairie Redox (A16) (LRR F, G, H)
Black	Histic (A3)			Stripped Matrix (S6)			Dark Surface (S7) (LRR G)
Hydrog	gen Sulfide (A4)			Loamy Mucky M	ineral (F1)			High Plains Depressions (F16)
Stratifi	ed Layers (A5) (LRR	(F)		Loamy Gleyed N	1atrix (F2)			(LRR H outside of MLRA 72 & 73)
1 cm N	/luck (A9) (LRR F, G	, H)		Depleted Matrix	(F3)			Reduced Vertic (F18)
Deplet	ed Below Dark Surfa	ice (A11)		Redox Dark Surf	face (F6)			Red Parent Material (TF2)
Thick I	Dark Surface (A12)			Depleted Dark S	urface (F7)			Very Shallow Dark Surface (TF 12)
□ Sandy	Mucky Mineral (S1)			Redox Depression	ons (F8)			Other (Explain in Remarks)
2.5 CN	/ Mucky Peat or Pea	t (S2)(LRR G	,H) 🗆	High Plains Dep	ressions (F16)			dicators of hydrophytic vegetation and wetland drology must be present, unless disturbed or
□ 5 cm N	/lucky Peat or Peat (S3) (LRR F)		(MLRA 72 & 73	B of LRR H)			blematic.
Restrictive	Layer (if present):							
Туре:								
Depth (Inche	es):						Ну	dric Soils Present? Yes 🗌 No 🛛
Remarks:								
HYDROLO	GY							
	drology Indicators:							
Primary India	cators (minimum of o	ne required; c	heck all that	apply)			Seco	ondary Indicators (2 or more required)
□ Surfac	ce Water (A1)	-		Salt Crust (B11)				Surface Soil Cracks (B6)
_	Water Table (A2)			Aquatic Inverteb	rates (B13)			Sparsely Vegetated Concave Surface (B8)
	ation (A3)			Hydrogen Sulfide	. ,			Drainage Patterns (B10)
	Marks (B1)			Dry Season Wat				Oxidized Rhizospheres along Living Roots (C3)
	nent Deposits (B2)			Oxidized Rhizos		ring Roots (C3)	·	(where tilled)
Drift D	Deposits (B3)			(where not tilled	d)			Crayfish Burrows (C8)

Presence of Reduced Iron (C4)

Other (Explain in Remarks)

Thin Muck Surface (C7)

Depth (inches):

Depth (inches):

Depth (inches):

 \boxtimes

 \boxtimes

 \boxtimes

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:

Algal Mat or Crust (B4)

Inundation Visible on Aerial Imagery (B7)

Yes

Yes

Yes

No

No

No

Water-Stained Leaves (B9)

Iron Deposits (B5)

Field Observations: Surface Water Present?

Water Table Present?

(includes capillary fringe)

Saturation Present?

 \boxtimes

No

Saturation Visible on Aerial Imagery (C9)

Frost-Heave Hummocks (D7) (LRR F)

Yes

Geomorphic Position (D2)

FAC-Neutral Test (D5)

Wetland Hydrology Present?

Project Site:	Black Riv	er Impou	undment Site	e		City/County: Penningto				on	Sampling	Date:	<u>8-23-</u>	2017	
Applicant/Owner:	Houston	Enginee	ring, Inc.							State:	MN	Sampling	Point:	<u>14w</u>	
Investigator(s):	Donna Ja	acob and	Mark D Aar	nenson			Se	ction, To	wnship, F	Range:	<u>S31-T153</u>	8N-R44W			
Landform (hillslope,	terrace, et	tc.): <u>fr</u>	ringe wetlan	ld		Loc	al relief (concave	, convex,	none):	none		S	Slope (%): <u>10</u>
Subregion (LRR):	E		Lat: <u>48</u>	8.028236			Long	-96.3	60243			Datum:	NAD19	<u>83</u>	
Soil Map Unit Name	: <u>Rolis</u>	<u>loam</u>									NWI clas	sification:	PEM1	С	
Are climatic / hydrold	ogic condit	tions on t	the site typic	cal for this t	time of year?	Yes	N	lo 🛛	(If no, e	xplain in	Remarks.)				
Are Vegetation], Soil	X,	or Hydrolog	gy 🛛,	significantly d	listurbe	d?	Are "Nor	mal Circu	mstances	s" present?	? Yes	\boxtimes	No	
Are Vegetation], Soil	□,	or Hydrolog	gy □,	naturally prob	lematio	?	(If neede	ed, explair	n any ans	wers in Re	emarks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Pemarks:								
Wetland Hydrology Present?	Yes	\boxtimes	No	Is the Sampling Area within a Wetland?	Yes	\boxtimes	No	
Hydric Soil Present?	Yes	\boxtimes	No					
Hydrophytic Vegetation Present?	Yes	\boxtimes	No					

Remarks:

VEGETATION – Use scientific names of plant	S			
Tree Stratum (Plot Size:)	Absolute <u>% Cover</u>	Dominant Species?	Indicator <u>Status</u>	Dominance Test Worksheet:
1 2				Number of Dominant Species That Are OBL, FACW, or FAC: $\underline{2}$ (A)
3 4				Total Number of Dominant Species Across All Strata: <u>2</u> (B)
Sapling/Shrub Stratum (Plot Size: 10" radius)		= Total Cove	 r	Percent of Dominant Species That Are OBL, FACW, or FAC: <u>100</u> (A/B)
1. Acer negundo	<u>5</u>	x	FAC	Prevalence Index worksheet:
2.	2	<u>~</u>	<u></u>	Total % Cover of: Multiply by:
3.				OBL species x1 =
4.				FACW species x2 =
5.				FAC species x3 =
	<u>5</u>	= Total Cove	 -	FACU species x4 =
Herb Stratum (Plot Size: 5' radius)				UPL species x5 =
1. Phalaris arundinacea	<u>80</u>	x	FACW	Column Totals: (A) (B)
2. <u>Urtica dioica</u>	<u>20</u>		<u>FAC</u>	Prevalence Index = B/A =
3. Typha sp.	<u>10</u>		<u>OBL</u>	Hydrophytic Vegetation Indicators:
4				1 – Rapid Test for Hydrophytic Vegetation
5				x 2 - Dominance Test is >50%
6				3 – Prevalence Index is ≤3.0¹
7				
8				4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
9				Problematic Hydrophytic Vegetation ¹ (Explain)
10				¹ Indicators of hydric soil and wetland hydrology must be present,
	<u>110</u>	= Total Cove	r	unless disturbed or problematic.
Woody Vine Stratum (Plot Size:)				
1				
2				
		= Total Cove	ſ	
% Bare Ground in Herb Stratum				Hydrophytic Vegetation Present? Yes 🛛 No 🗌
Remarks:				

SOIL

Sampling Point: 14w

Profile Des	scription: (Describ	e to the	depth r	needeo	d to doci	ument the indica	tor or confirm the	absence of	of indicat	tors.)		•	•			
Depth	Matr	rix				Redox	Features									
(inches)	Color (moist)		%	Co	olor (Mo	ist) %	Loc ²		Texture	•			Remarks			
<u>0-10</u>	<u>2.5Y 2/1</u>		50							<u>SL</u>						
	<u>2.5Y 4/1</u>		<u>50</u>						_		_					
<u>10-15</u>	<u>2.5Y 4/1</u>		<u>98</u>	2	2.5Y 5/4	<u>2</u>	<u>C</u>	M		<u>S/O. P</u>	<u>eat</u>					
<u>15+</u>	<u>2.5Y 2/1</u>		100						_	<u>S/O. P</u>	<u>eat</u>					
		_									_					
		_							_		_					
		_							_		_					
		-							_		_					
	Concentration, D=D	•					or Coated Sand (Grains. ² L	ocation:	PL=Po	e Linii	ng, M=Mat	rix			
_	I Indicators: (Appl	licable to	o all LRI	Rs, un	_	-						for Proble		•	oils ³ :	
	sol (A1)					Sandy Gleyed						m Muck (A				
	Epipedon (A2)					Sandy Redox (-					ast Prairie			R F, G, F)
_	(Histic (A3)					Stripped Matrix						k Surface		-		
_	ogen Sulfide (A4)					Loamy Mucky I					-	h Plains D	-		>	
_	ified Layers (A5) (L	,				Loamy Gleyed				_		RR H out		MLRA 72	& 73)	
	Muck (A9) (LRR F					Depleted Matrix						duced Vert				
	eted Below Dark Su	-	A11)			Redox Dark Su						d Parent M	-		10)	
_	C Dark Surface (A12	-				Depleted Dark						y Shallow er (Explair		•	12)	
												of hydroph			nd wetlan	d
												must be pr	esent, u	nless dist	urbed or	
	-					(lemati	<i>с</i> .				
Restrictive Layer (if present):																
Type: Depth (Inches): Hydric Soils Present? Yes																
Remarks:	<u> </u>									Hyu		13 1 103011			NO	
HYDROL	OGY															
	ydrology Indicato	rs:														
Primary Ind	licators (minimum o	of one re	equired;	; checł	call that	apply)				Secon	dary l	ndicators (2 or mor	e require	d)	
Surfa	ace Water (A1)					Salt Crust (B11)				Surfac	e Soil Cra	cks (B6)			
🛛 High	Water Table (A2)					Aquatic Inverte	brates (B13)				Sparse	ely Vegetat	ed Con	cave Surfa	ace (B8)	
□ Satu	ration (A3)					Hydrogen Sulfi	de Odor (C1)				Draina	ige Pattern	s (B10)			
□ Wate	er Marks (B1)					Dry Season Wa	ater Table (C2)				Oxidiz	ed Rhizosp	heres a	long Livin	g Roots	(C3)
Sedi	ment Deposits (B2)				Oxidized Rhizo	spheres along Li	ving Roots	(C3)		(whe	re tilled)				
Drift	Deposits (B3)					(where not till	ed)				Crayfis	sh Burrows	(C8)			
Alga	I Mat or Crust (B4)					Presence of Re	educed Iron (C4)				Satura	tion Visible	e on Aer	ial Image	ту (С9)	
Iron	Deposits (B5)					Thin Muck Surf	face (C7)			\boxtimes	Geom	orphic Pos	ition (D2	2)		
🔲 Inune	dation Visible on A	erial Im	agery (E	37)		Other (Explain	in Remarks)			\boxtimes	FAC-N	leutral Tes	t (D5)			
Water-Stained Leaves (B9) Frost-Heave Hummocks (D7) (LRR F)																
Field Obse	ervations:							T								
Surface Wa	Surface Water Present? Yes No Depth (inches):															
Water Table	e Present?	Yes		No		Depth (incl	hes):									
Saturation I		Yes		No		Depth (incl	hes):		Wetlar	nd Hydr	ology	Present?	Yes	\boxtimes	No	
	apillary fringe) Recorded Data (stre	eam dai	Jae. mo	nitorin	a well a	erial photos pre	vious inspections	s), if availa	ble:							
2000100 1		gut			, o			.,, availa								
Pomarka	amarke:															
Remarks:																

Project Site:	Black Riv	ver Impou	undment Site			С	ity/County	y:	Penningt	on	Sampling	Date:	<u>8-23-</u>	2017
Applicant/Owner:	Houston	Enginee	ring, Inc.						State:	MN	Sampling	Point:	<u>15u</u>	
Investigator(s):	Donna Ja	acob and	Mark D Aanens	son		S	ection, To	ownship, F	Range:	<u>S31-T153</u>	N-R44W			
Landform (hillslope,	terrace, e	tc.): <u>d</u>	litch slope		L	ocal relief	(concave	, convex,	none):	none		5	Slope (%): <u>5</u>
Subregion (LRR):	E		Lat: <u>48.03</u>	<u>3528</u>		Lon	g: <u>-96.3</u>	71043		I	Datum:	NAD19	<u>83</u>	
Soil Map Unit Name	: <u>Folda</u>	hl fine sa	andy loam							NWI class	sification:	Uplan	<u>d</u>	
Are climatic / hydrold	ogic condi	tions on t	the site typical fo	or this	time of year? Yes		No 🛛	(lf no, e	explain in l	Remarks.)				
Are Vegetation], Soil	⊠,	or Hydrology	⊠,	significantly distur	ed?	Are "Nor	rmal Circu	umstances	" present?	Yes	\boxtimes	No	
Are Vegetation], Soil	□,	or Hydrology	□,	naturally problema	tic?	(If neede	ed, explai	n any ans	wers in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	No	\boxtimes				
Hydric Soil Present?	Yes	No	\boxtimes				
Wetland Hydrology Present?	Yes	No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes
Bomarka:							

Remarks:

Tree Stratum (Plot Size:)	Absolute <u>% Cover</u>	Dominant Species?	Indicator <u>Status</u>	Dominance Test V	Norksheet:				
1 2.				Number of Domina That Are OBL, FAC		<u>0</u>	(A)		
3.				Total Number of Do	ominant				
4				Species Across All		<u>2</u>	(B)		
Sapling/Shrub Stratum (Plot Size:)		= Total Cove	r	Percent of Domina That Are OBL, FAC		<u>0</u>	(A/B)		
1				Prevalence Index	worksheet:				
2				Total % Cov	ver of:	Multiply	<u>by:</u>		
3				OBL species	<u>0</u>	x1 =	<u>o</u>		
4				FACW species	<u>0</u>	x2 =	<u>0</u>		
5				FAC species	<u>85</u>	x3 =	<u>225</u>		
		= Total Cove	r	FACU species	<u>5</u>	x4 =	<u>20</u>		
Herb Stratum (Plot Size: 5' radius)				UPL species	<u>10</u>	x5 =	<u>50</u>		
1. <u>Poa pratensis</u>	<u>60</u>	X	FACU	Column Totals:	<u>100</u>	(A)	<u>325</u>	(B)	
2. Lotus corniculatus	<u>20</u>	X	<u>FACU</u>		Prevalence	Index = B	/A = <u>3.3</u>		
3. Bromus inermis	<u>10</u>		UPL	Hydrophytic Vege	tation Indica	tors:			
4. Taraxacum officinale	<u>5</u>		FACU	1 – Rap	oid Test for Hy	drophytic	Vegetatio	n	
5. Phalaris arundinacea	<u>5</u>		FACW	2 - Don	ninance Test i	s >50%			
6				3 – Pre	valence Index	is ≤3.0¹			
7				4 - Mor	phological Ada	antations ¹	(Provide	supporting	data in
8					marks or on a			Supporting	
9				Probler	natic Hydroph	ytic Vege	tation ¹ (Ex	(plain)	
10				¹ Indicators of hydri	c soil and wetl	and hydro	ology mus	t be presen	t,
	<u>100</u>	= Total Cove	r	unless disturbed or	problematic.				
Woody Vine Stratum (Plot Size:)									
1									
2									
		= Total Cove	r						
% Bare Ground in Herb Stratum				Hydrophytic Vege	tation Preser	nt? Y	es 🗌	No	
Remarks:									
Mowed.									

SOIL											Sampling P	oint: 15u	I		
Profile	e Descript	ion: (Describe to	o the depth need	ded to doc	ument tl	he indicate	or or confir	m the al	bsence of ind	licators.)					
De	pth	Matrix				Redox	Features								
(inche	s) (Color (moist)	%	Color (Mo	ist)	%	Тур	e1	Loc ²	- Texture		Rem	arks		
<u>0-</u>	-4	2.5Y 2/1	100							L					
<u>4-</u>	14	<u>2.5Y 2/1</u>	<u>50</u>					_		<u>SL</u>					
		<u>2.5Y 7/3</u>	<u>50</u>												
								_							
¹ Type:	C= Conce	entration, D=Dep	letion, RM=Red	uced Matr	ix, CS=0	Covered o	or Coated S	and Gr	ains. ² Locat	ion: PL=Por	e Lining, M=Matrix				
Hydric	: Soil Indi	cators: (Applical	ble to all LRRs,	unless oth	erwise i	noted.)				Indic	ators for Problema	tic Hydr	ic Soils	5 ³ :	
	Histosol (A	.1)			Sandy	Gleyed N	Matrix (S4)				1 cm Muck (A9) (I	.RR I, J)			
	Histic Epip	edon (A2)			Sandy	Redox (S	S5)				Coast Prairie Red	ox (A16)	(LRR	F, G, H)
	Black Histi	c (A3)			Stripp	ed Matrix	(S6)				Dark Surface (S7)	(LRR G)		
	Hydrogen	Sulfide (A4)			Loamy	y Mucky N	/lineral (F1))			High Plains Depre	ssions (l	F16)		
	Stratified L	ayers (A5) (LRR	RF)		Loamy	Gleyed I	Matrix (F2)				(LRR H outside	of MLR	A 72 &	73)	
	1 cm Muck	(A9) (LRR F, G	, H)		Deple	ted Matrix	(F3)				Reduced Vertic (F	18)			
	Depleted E	Below Dark Surfa	ace (A11)		Redox	Dark Sur	rface (F6)				Red Parent Mater	ial (TF2)			
	Thick Dark	Surface (A12)			Deple	ted Dark S	Surface (F7	')			Very Shallow Dark	c Surface	e (TF 12	2)	
	Sandy Muo	cky Mineral (S1)			Redox	Depressi	ions (F8)				Other (Explain in F		<i>'</i>		
	2.5 CM Mu	icky Peat or Pea	it (S2)(LRR G, H	I) 🗆	High F	Plains Dep	pressions (I	=16)			ators of hydrophytic				d
	5 cm Muck	y Peat or Peat (S3) (LRR F)		(MLF	RA 72 & 7	3 of LRR H	H)			ematic.	n, unico.	s uistuii		
Restri	ctive Laye	er (if present):													
Туре:															
Depth	(Inches):									Hydr	ic Soils Present?	Yes		No	\boxtimes
Remar	rks:														
HYDR	ROLOGY														

Prima	ary Indicators (minimun	n of one re	equired	; check	all that	t apply)		Sec	ondary Indicators (2	or more	required)	
	Surface Water (A1)					Salt Crust (B11)			Surface Soil Crack	(B6)			
	High Water Table (A2	2)				Aquatic Invertebrates (B13)			Sparsely Vegetate	d Conca	ve Surfa	ce (B8)	
	Saturation (A3)					Hydrogen Sulfide Odor (C1)			Drainage Patterns	(B10)			
	Water Marks (B1)					Dry Season Water Table (C2)			Oxidized Rhizosph	neres alc	ong Living	g Roots (C3)
	Sediment Deposits (E	32)				Oxidized Rhizospheres along Living Roc	ots (C3)		(where tilled)				
	Drift Deposits (B3)	(where not tilled)			Crayfish Burrows ((C8)							
	Algal Mat or Crust (B4)								Saturation Visible	on Aeria	I Imagery	(C9)	
	□ Iron Deposits (B5) □ Thin Muck Surface (C7)								Geomorphic Positi	ion (D2)			
□ Inundation Visible on Aerial Imagery (B7) □ Other (Explain in Remarks)									FAC-Neutral Test	(D5)			
									Frost-Heave Humr	nocks ([07) (LRR	F)	
Field	Observations:												
Surfa	ce Water Present?	Yes		No	\boxtimes	Depth (inches):							
Wate	r Table Present?	Yes		No	\boxtimes	Depth (inches):							
	ration Present? Ides capillary fringe)	Yes		No		Depth (inches):	Wetla	and Hy	drology Present?	Yes		No	\boxtimes
Desc	ribe Recorded Data (s	tream gau	lge, mo	onitoring	g well, a	aerial photos, previous inspections), if avai	ilable:						
Rem	emarks:												

Wetland Hydrology Indicators:

Project Site:	Black	River Im	poundment	Site			City/Co	unty:	Penning	ton	Sampling	Date:	<u>8-23-</u>	2017
Applicant/Owner:	Houst	on Engir	neering, Inc.						State:	MN	Sampling	Point:	<u>15w</u>	
Investigator(s):	Donna	a Jacob a	and Mark D	Aanenson			Section	, Township, I	Range:	<u>S31-T153</u>	N-R44W			
Landform (hillslope,	terrace	e, etc.):	ditch botto	om		Local re	lief (conc	ave, convex,	none):	<u>concave</u>		5	Slope (%): <u>1</u>
Subregion (LRR):	E		Lat:	48.033530		L	ong: <u>-9</u>	6.370992			Datum:	NAD19	83	
Soil Map Unit Name	: <u>Fo</u>	Idahl fine	e sandy loar	<u>n</u>						NWI class	sification:	Uplan	d	
Are climatic / hydrold	ogic co	nditions	on the site ty	pical for thi	s time of year?	Yes 🛛	No	🔲 (If no, e	explain in	Remarks.)				
Are Vegetation], S	oil 🛛	, or Hydr	ology 🛛 🖾,	significantly d	listurbed?	Are "	Normal Circu	umstance	s" present?	Yes	\boxtimes	No	
Are Vegetation], S	oil 🗌	, or Hydr	ology 🔲,	naturally prob	lematic?	(lf ne	eded, explai	n any ans	wers in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydric Soil Present?	Yes	\boxtimes	No					
Wetland Hydrology Present?	Yes	\boxtimes	No	Is the Sampling Area within a Wetland?	Yes	\boxtimes	No	
Remarks:								

Remarks:

Tree Stratum (Plot Size:)	Absolute <u>% Cover</u>	Dominant Species?	Indicator Status	Dominance Test Worksheet:	
1 2				Number of Dominant Species That Are OBL, FACW, or FAC: (A)	
3 4				Total Number of Dominant Species Across All Strata: (B)	
Sapling/Shrub Stratum (Plot Size:)		= Total Cove	r	Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B)	
1				Prevalence Index worksheet:	
2				Total % Cover of: Multiply by:	
3				OBL species x1 =	
4				FACW species x2 =	
5				FAC species x3 =	
		= Total Cove	r	FACU species x4 =	
Herb Stratum (Plot Size: 5' radius)				UPL species x5 =	
1. Phalaris arundinacea	<u>100</u>	x	FACW	Column Totals: (A) (B)	
2				Prevalence Index = B/A =	
3				Hydrophytic Vegetation Indicators:	_
4				<u>x</u> 1 – Rapid Test for Hydrophytic Vegetation	
5				2 - Dominance Test is >50%	
6				3 – Prevalence Index is ≤3.01	
7 8				4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)	ı
9				Problematic Hydrophytic Vegetation ¹ (Explain)	
10				¹ Indicators of hydric soil and wetland hydrology must be present,	
	<u>100</u>	= Total Cove	r	unless disturbed or problematic.	
Woody Vine Stratum (Plot Size:)					
1					
2					
		= Total Cove	r		
% Bare Ground in Herb Stratum				Hydrophytic Vegetation Present? Yes 🛛 No 🗌	
Remarks:					
Mowed.					
NOWEG.					

SOI	L

Sampling Point: 15w

Prof	ile Description: (Describ	e to the	depth nee	eded to docu	ument the indicator	or confirm the	absence of	findicators.)								
D	epth Mat	rix														
(inch	nes) Color (moist)		%	Color (Mo	ist) %	Type¹	Loc ²	Texture	e	Remark	s					
	0-6 <u>2.5Y 2/2</u>		50					<u><u> </u></u>								
_	2.5Y 6/2		<u>50</u>													
e	<u>5-14</u> <u>2.5Y 6/2</u>		<u>90</u>	<u>2.5Y 5/4</u>	<u>10</u>	<u>C</u>	M	<u>C</u>								
_								. <u> </u>								
_																
_		_														
_		_														
	e: C= Concentration, D=I	Depletior	n. RM=Re	duced Matri	x. CS=Covered or	Coated Sand G	rains. ² Lo	cation: PL=Po	 ore Lining, M=Matrix	r						
	ric Soil Indicators: (App								cators for Problem		Soils ³ :					
	Histosol (A1)				Sandy Gleyed Ma	atrix (S4)			1 cm Muck (A9)	-						
	Histic Epipedon (A2)				Sandy Redox (S5				Coast Prairie Re		RRFGH)				
	Black Histic (A3)				Stripped Matrix (S				Dark Surface (S			,				
	Hydrogen Sulfide (A4)				Loamy Mucky Mir						3)					
_	· ·			_		· · ·				Depressions (F16)						
	Stratified Layers (A5) (L	-			Loamy Gleyed Ma			_	-		2 @ 13)					
	1 cm Muck (A9) (LRR F	,			Depleted Matrix (,			Reduced Vertic							
	Depleted Below Dark S		411)		Redox Dark Surfa	. ,				it Material (TF2) ow Dark Surface (TF 12)						
	Thick Dark Surface (A1	-			Depleted Dark Su					,	F 12)					
	Sandy Mucky Mineral (Redox Depressio			□ ³Ind	Other (Explain in icators of hydrophy		and wetlan	d				
	2.5 CM Mucky Peat or I	-		H) 🗆	High Plains Depre			hydi	rology must be pres			ũ –				
	5 cm Mucky Peat or Pe		LKK F)		(MLRA 72 & 73	OT LRR H)		prob	olematic.							
	rictive Layer (if present	.):														
Туре																
	h (Inches):							Hyd	Iric Soils Present?	Yes	🛛 No					
	arks:															
Can'	t go further than 14"															
HYD	ROLOGY															
Wetl	and Hydrology Indicato	ors:														
Prim	ary Indicators (minimum	of one re	equired; ch	neck all that	apply)			Secor	ndary Indicators (2	or more requi	red)					
	Surface Water (A1)				Salt Crust (B11)				Surface Soil Crack	s (B6)						
	High Water Table (A2)				Aquatic Invertebra	ates (B13)			Sparsely Vegetate	d Concave Su	Irface (B8)					
	Saturation (A3)				Hydrogen Sulfide	Odor (C1)			Drainage Patterns	(B10)						
	Water Marks (B1)				Dry Season Wate	· · ·			Oxidized Rhizosph	. ,	/ina Roots (C3)				
	Sediment Deposits (B2	')			Oxidized Rhizosp	. ,	ina Roots ((where tilled)			,				
	Drift Deposits (B3)	,			(where not tilled	Ū.		. ,	Crayfish Burrows (C8)						
	Algal Mat or Crust (B4)				Presence of Redu	,			Saturation Visible		erv (CQ)					
	Iron Deposits (B5)				Thin Muck Surfac				Geomorphic Positi		jery (00)					
_	• • • •	orial Ima	agon (P7)						·	. ,						
	Inundation Visible on A															
	Water-Stained Leav	es (b9)							FIOSI-Heave Humin		KK F)					
	Observations:	N/-														
	ace Water Present?	Yes		No Depth (inches):												
	er Table Present?	Yes		No Depth (inches):												
	ration Present? Ides capillary fringe)	Yes		No 🗆	Depth (inche	s):		Wetland Hydr	rology Present?	Yes 🗌	No					
	ribe Recorded Data (str	eam dau	iae, monit	oring well a	erial photos previo	ous inspections)	, if availabl	le:								
2000		gau		, i o ii, u			,									
Rem	harks:															

Project Site:	Black Riv	er Impou	undment Site			City	//County:	Penning	ton	Sampling	Date:	<u>8-23-</u>	2017
Applicant/Owner:	Houston I	Enginee	ring, Inc.					State:	MN	Sampling	Point:	<u>16u</u>	
Investigator(s):	Donna Ja	cob and	Mark D Aanen	son		Sec	tion, Township,	Range:	<u>S30-T153</u>	N-R44W			
Landform (hillslope,	terrace, et	c.): <u>d</u>	itch slope		Loc	al relief (c	concave, convex	, none):	none		S	lope (%): <u>5</u>
Subregion (LRR):	E		Lat: <u>48.03</u>	6284		Long:	-96.371002			Datum:	NAD19	33	
Soil Map Unit Name	Kittson	<u>n loam</u>							NWI class	sification:	<u>Uplan</u>	<u>d</u>	
Are climatic / hydrold	ogic condit	ions on t	he site typical f	or this	time of year? Yes	🛛 No	o 🔲 (If no,	explain in	Remarks.)				
Are Vegetation], Soil	⊠,	or Hydrology	X,	significantly disturbe	d? A	Are "Normal Circ	umstance	s" present?	Yes	\boxtimes	No	
Are Vegetation], Soil	□,	or Hydrology	□,	naturally problemati	c? (If needed, expla	in any ans	wers in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Remarks:					is the Sampling Area within a wettand?	res	NO	
Wetland Hydrology Present?	Yes		No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes
Hydric Soil Present?	Yes	\boxtimes	No					
Hydrophytic Vegetation Present?	Yes		No	\boxtimes				

Remarks:

Tree	Stratum (Plot Size:)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test	Worksheet:					
1. 2.					Number of Domina That Are OBL, FA		<u>0</u>	(A)			
3. 4.	_				Total Number of D Species Across All		<u>2</u>	(B)			
Sapl	ing/Shrub Stratum (Plot Size:)		= Total Cover	ŗ	Percent of Domina That Are OBL, FA		<u>0</u>	(A/B)		
1.					Prevalence Index	worksheet:					
					Total % Co	ver of:	Multiply	by:			
3.					OBL species	<u>o</u>	x1 =	<u>0</u>			
4.					FACW species	<u>55</u>	x2 =	<u>110</u>			
5.					FAC species	<u>0</u>	x3 =	<u>0</u>			
			= Total Cover	r	FACU species	<u>20</u>	x4 =	<u>80</u>			
Herb	<u>Stratum (</u> Plot Size: <u>5' radius</u>)				UPL species	<u>20</u>	x5 =	<u>100</u>			
1.	Poa pratensis	<u>40</u>	X	FACU	Column Totals:	<u>100</u>	(A)	<u>290</u>	(B)	1	
2.	Bromus inermis	<u>20</u>	X	<u>UPL</u>		Prevalence	Index = B	/A = <u>3.1</u>			
3.	Spartina pectinata	<u>15</u>		FACW	Hydrophytic Vege	etation Indica	tors:				
4.	Lotus corniculatus	<u>10</u>		FACU	1 – Ra	pid Test for Hy	/drophytic	Vegetati	on		
5.	Phalaris arundinacea	<u>5</u>		FACW	2 - Dor	ninance Test i	s >50%				
6.	Cirsium arvense	<u>5</u>		FACU	3 – Pre	evalence Index	; is ≤3.0¹				
7.	<u>Plantago major</u>	<u>5</u>		<u>FAC</u>		phological Ad		(Provide		rtina da	ata in
8.						marks or on a			Suppo	i ung uz	
9.					Problem	matic Hydroph	ytic Veget	ation ¹ (E	xplain)		
10.					¹ Indicators of hydri	c soil and wet	land hydro	ology mu	st be pr	esent,	
		<u>100</u>	= Total Cover	r	unless disturbed o	r problematic.	-				
Woo	dy Vine Stratum (Plot Size:)										
1											
2											
			= Total Cover	•							
% B	are Ground in Herb Stratum				Hydrophytic Vege	etation Prese	nt? Y	es []	No	\boxtimes
Rema	arks:										
Mow	ed.										

SOI	L						Sampling P	oint: 16u	I						
Prof	ile Descri	ption: (Describe to	o the depth need	dicators.)											
D	Depth	Matrix				Redox F	eatures		_						
(incl	hes)	Color (moist)	%	Color (Mo	ist)	%	Type ¹	Loc ²	Texture		Rem	arks			
	<u>0-5</u>	<u>2.5Y 2/1</u>	100						SL						
ţ	<u>5-13</u>	<u>2.5Y 5/6</u>	<u>90</u>	<u>2.5Y 6/2</u>	2	<u>10</u>	<u>C</u>	M	<u>CL</u>						
_															
_															
_															
_															
_															
_															
1Тур	e: C= Cor	centration, D=Dep	pletion, RM=Redu	uced Matr	ix, CS	=Covered or	Coated Sand G	Grains. ² Locat	tion: PL=Por	e Lining, M=Matrix					
Hyd	ric Soil In	dicators: (Applica	able to all LRRs, u	unless oth	erwise	e noted.)			Indic	ators for Problema	tic Hydı	ic Soil	S ³ :		
	Histosol	(A1)				1 cm Muck (A9) (I	.RR I, J)								
	Histic Ep	oipedon (A2)			Sand	dy Redox (St	5)			Coast Prairie Red	ox (A16)	(LRR	F, G, H)	
	Black Hi	stic (A3)			Strip	ped Matrix (S6)			Dark Surface (S7)	(LRR G)			
	Hydroge	n Sulfide (A4)			Loan	ny Mucky Mi	neral (F1)			High Plains Depre	ssions (F16)			
	Stratified	d Layers (A5) (LRF	R F)	Loamy Gleyed Matrix (F2)						(LRR H outside	of MLR	A 72 &	73)		
	1 cm Mu	ick (A9) (LRR F, G	6, H)	\boxtimes	Depl	eted Matrix ((F3)			Reduced Vertic (F	Reduced Vertic (F18)				
	Depleted	d Below Dark Surfa	ace (A11)		Redo	ox Dark Surfa	ace (F6)			Red Parent Mater	ial (TF2)				
	Thick Da	ark Surface (A12)			Depl	eted Dark Su	urface (F7)			Very Shallow Dark	c Surface	e (TF 12	2)		
	Sandy M	lucky Mineral (S1))		Redo	ox Depressio	ons (F8)			Other (Explain in F		<i>'</i>			
	2.5 CM I	Mucky Peat or Pea	at (S2)(LRR G, H)	High	Plains Depr	essions (F16)			cators of hydrophytic plogy must be preser				d	
	5 cm Mu	icky Peat or Peat ((S3) (LRR F)		(ML	_RA 72 & 73	of LRR H)		,	ematic.	ių arnoo	o ulotali			
Rest	trictive La	yer (if present):													
Туре	e:														
Dept	th (Inches)):							Hydr	ic Soils Present?	Yes	\boxtimes	No		
Rem	narks:														
HYD	DROLOG	Υ													

Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Secondary Indicators (2 or more required) Surface Water (A1) Salt Crust (B11) Surface Soil Cracks (B6) High Water Table (A2) Sparsely Vegetated Concave Surface (B8) Aquatic Invertebrates (B13) Saturation (A3) Hydrogen Sulfide Odor (C1) Drainage Patterns (B10) Water Marks (B1) Dry Season Water Table (C2) Oxidized Rhizospheres along Living Roots (C3) Sediment Deposits (B2) Oxidized Rhizospheres along Living Roots (C3) (where tilled) Drift Deposits (B3) (where not tilled) Crayfish Burrows (C8) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Saturation Visible on Aerial Imagery (C9) Iron Deposits (B5) Thin Muck Surface (C7) Geomorphic Position (D2) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) FAC-Neutral Test (D5) Frost-Heave Hummocks (D7) (LRR F) Water-Stained Leaves (B9) Field Observations: Surface Water Present? Yes No \boxtimes Depth (inches): Water Table Present? Yes No \boxtimes Depth (inches): Saturation Present? Yes No \boxtimes Depth (inches): Wetland Hydrology Present? Yes No \boxtimes (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Remarks:

Project Site:	Black R	iver Impou	undment Site			City	y/County:		Penningt	on	Sampling	Date:	<u>8-23-</u>	2017
Applicant/Owner:	Houstor	n Engineer	ring, Inc.						State:	MN	Sampling	Point:	<u>16w</u>	
Investigator(s):	Donna .	lacob and	Mark D Aanen	son		See	ction, Tow	vnship, F	Range:	<u>S30-T153</u>	N-R44W			
Landform (hillslope,	terrace, e	etc.): <u>d</u>	itch bottom		Lo	cal relief (concave,	convex,	none):	<u>concave</u>		S	lope (%): <u>1</u>
Subregion (LRR):	E		Lat: <u>48.03</u>	86525		Long:	-96.37	1004		I	Datum:	NAD198	33	
Soil Map Unit Name	: <u>Kitts</u>	on loam								NWI class	sification:	Uplan	<u>d</u>	
Are climatic / hydrold	ogic cond	litions on t	the site typical f	or this	time of year? Yes	🛛 N	lo 🛛	(If no, e	xplain in l	Remarks.)				
Are Vegetation], Soil	⊠,	or Hydrology	X,	significantly disturbe	d?	Are "Norm	nal Circu	mstances	" present?	Yes	\boxtimes	No	
Are Vegetation], Soil	□,	or Hydrology	□,	naturally problemati	c? ((If needed	l, explair	n any ans	wers in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	\boxtimes	No					
Hydric Soil Present?	Yes	\boxtimes	No					
Wetland Hydrology Present?	Yes	\boxtimes	No	Is the Sampling Area within a Wetland?	Yes	\boxtimes	No	
Remarks [.]								

Remarks:

Tree Stratum (Plot Size:)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test Worksheet:
1 2				Number of Dominant Species (A) That Are OBL, FACW, or FAC:
3 4.				Total Number of Dominant (B) Species Across All Strata:
		= Total Cove	r	Percent of Dominant Species (A/B) That Are OBL, FACW, or FAC: (A/B)
Sapling/Shrub Stratum (Plot Size:)				, , , ,
1				Prevalence Index worksheet:
2				Total % Cover of: Multiply by:
3				OBL species x1 =
4				FACW species x2 =
5				FAC species x3 =
		= Total Cove	r	FACU species x4 =
<u>Herb Stratum (</u> Plot Size: <u>5' radius</u>)				UPL species x5 =
1. Phalaris arundinacea	<u>60</u>	x	FACW	Column Totals: (A) (B)
2. Spartina pectinata	<u>20</u>	x	FACW	Prevalence Index = B/A =
3. <u>Typha sp.</u>	<u>5</u>		<u>OBL</u>	Hydrophytic Vegetation Indicators:
4. Apocynum cannabinum	<u>5</u>		FAC	<u>x</u> 1 – Rapid Test for Hydrophytic Vegetation
5				2 - Dominance Test is >50%
6				3 – Prevalence Index is ≤3.01
7 8				4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
9.				Problematic Hydrophytic Vegetation ¹ (Explain)
10.				¹ Indicators of hydric soil and wetland hydrology must be present.
	<u>90</u>	= Total Cove	r	unless disturbed or problematic.
Woody Vine Stratum (Plot Size:)				
1				
2				
		= Total Cove	r	
% Bare Ground in Herb Stratum				Hydrophytic Vegetation Present? Yes 🛛 No 🗌
Remarks:				
Mowed.				

SO	IL										Sampling	Point: 16	N		
Prof	file Descr	iption: (Describe to	o the depth nee	ded to docu	ument th	ne indica	ator or confirm	the abs	sence of inc	licators.)					
0	Depth	Matrix				Redox	x Features			_					
(inc	hes)	Color (moist)	%	Color (Mo	ist)	%	Туре ¹		Loc ²	Texture	·	Ren	narks		
	<u>0-5</u>	<u>2.5Y 2/1</u>	<u>100</u>							<u>SL</u>					
	<u>5-13</u>	<u>2.5Y 6/2</u>	<u>90</u>	<u>2.5Y 5/6</u>		<u>10</u>	<u>C</u>		M	<u>CL</u>					
_															
_							. <u> </u>								
_															
_															
_															
-															
¹ Typ	e: C= Co	ncentration, D=Dep	oletion, RM=Rec	duced Matri	x, CS=0	Covered	or Coated Sar	nd Grai	ns. ² Locat	ion: PL=Por	e Lining, M=Matrix				
Hyd	ric Soil Ir	ndicators: (Applica	ble to all LRRs,	unless oth	erwise r	noted.)				Indic	ators for Problem	natic Hyd	ric Soil	s³:	
	Histoso	I (A1)			Sandy	Gleyed	Matrix (S4)				1 cm Muck (A9)	(LRR I, J)		
	Histic E	pipedon (A2)			(S5)				Coast Prairie Re	dox (A16) (LRR	F, G, H)		
	Black H	istic (A3)			Strippe	ed Matrix	x (S6)				Dark Surface (S	7) (LRR G	3)		
	Hydroge	en Sulfide (A4)			Loamy	/ Mucky	Mineral (F1)				High Plains Dep	ressions ((F16)		
	Stratifie	d Layers (A5) (LRR	R F)		Loamy	Gleyed	Matrix (F2)				(LRR H outsid	le of MLF	RA 72 &	73)	
	1 cm Mi	uck (A9) (LRR F, G	i, H)	\boxtimes	Deplet	ed Matri	ix (F3)				Reduced Vertic	(F18)			
	Deplete	d Below Dark Surfa	ace (A11)		Redox	Dark Su	urface (F6)				Red Parent Mate	erial (TF2)		
	Thick D	ark Surface (A12)			Deplet	ed Dark	Surface (F7)				Very Shallow Da	rk Surfac	e (TF 12	2)	
	Sandy M	Mucky Mineral (S1)			Redox	Depres	sions (F8)				Other (Explain ir				
	2.5 CM	Mucky Peat or Pea	at (S2)(LRR G, I	H) 🗆	High P	lains De	epressions (F1	6)		³ Indi bydr	cators of hydrophyt plogy must be pres	ic vegetat	tion and	wetland	d
	5 cm Mi	ucky Peat or Peat (S3) (LRR F)		(MLR	RA 72 &	73 of LRR H)				ematic.	ent, unice	is distai		
Res	trictive La	ayer (if present):													
Туре	e:														
Dep	th (Inches	s):								Hydi	ic Soils Present?	Yes	\boxtimes	No	
Rem	narks:														
НҮІ	DROLOO	GY													

Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Secondary Indicators (2 or more required) Surface Water (A1) Salt Crust (B11) Surface Soil Cracks (B6) High Water Table (A2) Sparsely Vegetated Concave Surface (B8) Aquatic Invertebrates (B13) Saturation (A3) Hydrogen Sulfide Odor (C1) Drainage Patterns (B10) Water Marks (B1) Dry Season Water Table (C2) Oxidized Rhizospheres along Living Roots (C3) Sediment Deposits (B2) Oxidized Rhizospheres along Living Roots (C3) (where tilled) Drift Deposits (B3) (where not tilled) Crayfish Burrows (C8) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Saturation Visible on Aerial Imagery (C9) Iron Deposits (B5) Thin Muck Surface (C7) \boxtimes Geomorphic Position (D2) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) \boxtimes FAC-Neutral Test (D5) Frost-Heave Hummocks (D7) (LRR F) Water-Stained Leaves (B9) Field Observations: Surface Water Present? Yes No \boxtimes Depth (inches): Water Table Present? Yes No \boxtimes Depth (inches): Saturation Present? Yes No \boxtimes Depth (inches): Wetland Hydrology Present? Yes \boxtimes No (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Remarks:

Project Site:	Black	ck River Impoundment Site						City/County: Penning			Penningt	on	Sampling Date:		<u>8-23-</u>	2017
Applicant/Owner:	Hous	ton Eng	gineer	ing, Inc.							State:	MN	Sampling	Point:	<u>17w</u>	
Investigator(s):	Donn	a Jaco	b and	Mark D Aa	anenson			S	ection,	Township, I	Range:	<u>S19-T153</u>	N-R44W			
Landform (hillslope,	terrace	e, etc.):	d	itch botton	<u>n</u>		Loc	al relief	(conca	ve, convex,	none):	<u>concave</u>		S	lope (%): <u>1</u>
Subregion (LRR):	E			Lat:	48.063652			Lon	g: <u>-96</u>	6.371057			Datum:	NAD19	<u>83</u>	
Soil Map Unit Name	: <u>R</u>	oliss lo	<u>am</u>									NWI class	sification:	Uplan	<u>d</u>	
Are climatic / hydrold	ogic co	ondition	s on t	he site typ	ical for thi	s time of year?	Yes	\boxtimes	No 🗌] (If no, e	explain in	Remarks.)				
Are Vegetation], S	ioil	⊠,	or Hydrol	ogy 🛛,	significantly	disturbe	d?	Are "N	Iormal Circu	umstances	s" present?	Yes	\boxtimes	No	
Are Vegetation], S	ioil	□,	or Hydrol	ogy □,	naturally pro	blematio	?	(If nee	eded, explai	n any ans	wers in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	\boxtimes	No					
Hydric Soil Present?	Yes	\boxtimes	No					
Wetland Hydrology Present?	Yes	\boxtimes	No	Is the Sampling Area within a Wetland?	Yes	\boxtimes	No	
Remarks:								

Remarks:

Tree Stratum (Plot Size:)	Absolute <u>% Cover</u>	Dominant Species?	Indicator Status	Dominance Test Worksheet:
1 2				Number of Dominant Species That Are OBL, FACW, or FAC: (A)
3 4				Total Number of Dominant Species Across All Strata: (B)
Sapling/Shrub Stratum (Plot Size:)		= Total Cover		Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B)
1				Prevalence Index worksheet:
2				Total % Cover of: Multiply by:
3				OBL species x1 =
4				FACW species x2 =
5				FAC species x3 =
		= Total Cover		FACU species x4 =
Herb Stratum (Plot Size: 5' radius)				UPL species x5 =
1. Spartina pectinata	<u>85</u>	X	<u>FACW</u>	Column Totals: (A) (B)
2. Eleocharis palustris	<u>10</u>		<u>OBL</u>	Prevalence Index = B/A =
3. Juncus balticus	<u>5</u>		FACW	Hydrophytic Vegetation Indicators:
4				<u>x</u> 1 − Rapid Test for Hydrophytic Vegetation
5				2 - Dominance Test is >50%
6				3 – Prevalence Index is ≤3.0 ¹
7 8				 4 - Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet)
9				Problematic Hydrophytic Vegetation ¹ (Explain)
10				¹ Indicators of hydric soil and wetland hydrology must be present,
	<u>100</u>	= Total Cover		unless disturbed or problematic.
Woody Vine Stratum (Plot Size:)				
1				
2				
		= Total Cover		
% Bare Ground in Herb Stratum				Hydrophytic Vegetation Present? Yes 🛛 No 🗌
Remarks:				
Mowed.				

SOIL

Sampling Point: 17w

Profi	e Description: (Descri	be to the	depth r	needed	to docu	ument the indicato	or or confirm the	absence of	f indicator	s.)	· · · · ·					
De	epth Mat	trix				Redox	Features									
(inch	es) Color (moist))	%	exture	Remarks											
. (0-5 <u>2.5Y 2/1</u>		100							SL						
	-13 <u>2.5Y 6/2</u>		90	2.	5Y 65/6	<u> </u>	<u> </u>	М	-	CL						
							—	_								
		_														
		_														
		-							-							
		_														
		_														
17																
	: C= Concentration, D=						r Coated Sand G	irains. ² LC	cation: P							
_	c Soil Indicators: (App	blicable to	o all LR	Rs, unle	_	-				_	ators for Problematic Hydric Soils ³ :					
	Histosol (A1)					Sandy Gleyed N					1 cm Muck (A9) (LRR I, J)					
	Histic Epipedon (A2)					Sandy Redox (S					Coast Prairie Redox (A16) (LRR F, G, H)					
	Black Histic (A3)					Stripped Matrix ((S6)				Dark Surface (S7) (LRR G)					
	Hydrogen Sulfide (A4)					Loamy Mucky M	lineral (F1)				High Plains Depressions (F16)					
	Stratified Layers (A5) (I	LRR F)				Loamy Gleyed N	/latrix (F2)				(LRR H outside of MLRA 72 & 73)					
	1 cm Muck (A9) (LRR I	F, G, H)			\boxtimes	Depleted Matrix	(F3)				Reduced Vertic (F18)					
	Depleted Below Dark S	Surface (A	A11)			Redox Dark Sur	face (F6)		Red Parent Material (TF2)							
	Thick Dark Surface (A1	12)						Very Shallow Dark Surface (TF 12)								
	Sandy Mucky Mineral ((S1)						Other (Explain in Remarks)								
	2.5 CM Mucky Peat or	Peat (S2	2)(LRR	G, H)				cators of hydrophytic vegetation and wetland blogy must be present, unless disturbed or								
	5 cm Mucky Peat or Pe	eat (S3) ((LRR F))				ematic.								
Restr																
Type:	testrictive Layer (if present): ype:															
Depth	ype: epth (Inches): Hydric Soils Present? Yes ⊠ No □															
Rema	irks:								I		<u> </u>					
	Hyaric Soils Present / Yes No Remarks:															
	Ind Hydrology Indicate									_						
	ry Indicators (minimum	of one re	equired	; check						_	dary Indicators (2 or more required)					
	Surface Water (A1)					Salt Crust (B11)			l		Surface Soil Cracks (B6)					
	High Water Table (A2))				Aquatic Inverteb	()				Sparsely Vegetated Concave Surface (B8)					
	Saturation (A3)					Hydrogen Sulfid	e Odor (C1)		[Drainage Patterns (B10)					
	Water Marks (B1)					Dry Season Wat	ter Table (C2)		[_ C	Oxidized Rhizospheres along Living Roots (C3)					
	Sediment Deposits (B2	2)				Oxidized Rhizos	pheres along Liv	ing Roots	(C3)		(where tilled)					
	Drift Deposits (B3)					(where not tille	d)		[_ C	Crayfish Burrows (C8)					
	Algal Mat or Crust (B4)				Presence of Rec	duced Iron (C4)		[_ s	Saturation Visible on Aerial Imagery (C9)					
	Iron Deposits (B5)					Thin Muck Surfa	ace (C7)		I	XG	Geomorphic Position (D2)					
	Inundation Visible on A	Aerial Ima	agery (E	37)		Other (Explain ir	n Remarks)		I	🛛 F	AC-Neutral Test (D5)					
											Frost-Heave Hummocks (D7) (LRR F)					
	Observations:															
	urface Water Present? Yes No X Depth (inches):															
	Table Present?	Yes		No		Depth (inche	,									
	ation Present?		_		_											
	des capillary fringe)	Yes		No	\boxtimes	Depth (inche	es):		Wetland	Hydro	ology Present? Yes 🛛 No 🗌					
Desci	ibe Recorded Data (str	ream gau	uge, mo	nitoring	well, a	erial photos, prev	vious inspections), if availab	le:							
Rem	marks:															
1.011																

Project Site:	Blac	ck River Impoundment Site						City/County: Penningto				on	Sampling	Date:	<u>8-23-</u>	2017
Applicant/Owner:	Hous	ston En	gineer	ing, Inc.							State:	MN	Sampling	Point:	<u>18u</u>	
Investigator(s):	Donr	na Jaco	b and	Mark D Aa	anenson			S	ection,	Township,	Range:	<u>S18-T153</u>	N-R44W			
Landform (hillslope,	terrac	e, etc.)	: <u>d</u>	itch slope			Loc	al relief	(conca	ve, convex	, none):	none		S	Slope (%): <u>5</u>
Subregion (LRR):	E			Lat: <u>4</u>	8.064617			Lon	g: <u>-96</u>	<u> 371137</u>			Datum:	NAD19	<u>83</u>	
Soil Map Unit Name	: <u>F</u>	Roliss Ic	<u>am</u>									NWI class	sification:	Uplan	<u>d</u>	
Are climatic / hydrold	ogic c	onditior	ns on t	he site typi	ical for this	time of year?	Yes	\boxtimes	No [] (If no, e	explain in	Remarks.)				
Are Vegetation], 8	Soil	⊠,	or Hydrold	ogy ⊠,	significantly of	listurbe	d?	Are "N	Iormal Circ	umstances	s" present?	Yes	\boxtimes	No	
Are Vegetation], 8	Soil	□,	or Hydrold	ogy □,	naturally prob	olematio	;?	(If nee	eded, explai	in any ans	wers in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Remarks:					is the Sampling Area within a wettand?	res	NO	
Wetland Hydrology Present?	Yes		No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes
Hydric Soil Present?	Yes	\bowtie	No					
Hydrophytic Vegetation Present?	Yes		No	\boxtimes				

Remarks:

Tree Stratum (Plot Size:)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test Worksheet:	
1 2				Number of Dominant Species That Are OBL, FACW, or FAC: 0 (A)	
3 4				Total Number of Dominant Species Across All Strata: <u>2</u> (B)	
Sapling/Shrub Stratum (Plot Size:)		= Total Cove	r	Percent of Dominant Species That Are OBL, FACW, or FAC: 0 (A/B)	
1				Prevalence Index worksheet:	
2				Total % Cover of: Multiply by:	
3				OBL species x1 =	
4				FACW species x2 =	
5				FAC species x3 =	
		= Total Cove	r	FACU species x4 =	
Herb Stratum (Plot Size: 5' radius)				UPL species x5 =	
1. Bromus inermis	<u>45</u>	<u>×</u>	<u>UPL</u>	Column Totals: (A) (B)	
2. <u>Poa pratensis</u>	<u>45</u>	x	FACU	Prevalence Index = B/A =	
3. <u>Rosa arkansana</u>	<u>5</u>		<u>FACU</u>	Hydrophytic Vegetation Indicators:	
4. Taraxacum officinale	<u>5</u>		FACU	1 – Rapid Test for Hydrophytic Vegetation	
5				2 - Dominance Test is >50%	
6				3 – Prevalence Index is ≤3.0 ¹	
7				4 - Morphological Adaptations ¹ (Provide supportin	n data in
8				Remarks or on a separate sheet)	ig data in
9				Problematic Hydrophytic Vegetation ¹ (Explain)	
10				¹ Indicators of hydric soil and wetland hydrology must be prese	ent,
	<u>100</u>	= Total Cove	r	unless disturbed or problematic.	
Woody Vine Stratum (Plot Size:)					
1					
2					
		= Total Cove	r		
% Bare Ground in Herb Stratum				Hydrophytic Vegetation Present? Yes D No	
Remarks:					

SOI	L									Sampling P	oint: 18u			
Prof	ile Descr	iption: (Describe to	o the depth nee	ded to doci	ument the indic	cator or conf	irm the a	bsence of ind	licators.)					
C	Depth	Matrix			Red	ox Features			_					
(inc	hes)	Color (moist)	%	Color (Mo	ist) %	Ту	pe ¹	Loc ²	Texture		Rem	arks		
	<u>0-6</u>	<u>2.5Y 2/1</u>	100						mucky	L				
1	<u>6-14</u>	2.5Y 6/2	<u>90</u>	<u>2.5 5/6</u>	<u>10</u>	<u>(</u>	2	M	<u>C</u>					
_														
_														
_														
_														
_														
_														
¹Тур	e: C= Cor	ncentration, D=Dep	oletion, RM=Red	luced Matri	x, CS=Covere	d or Coated	Sand G	ains. ² Locat	ion: PL=Por	e Lining, M=Matrix				
Hyd	ric Soil In	dicators: (Applica	ble to all LRRs,	unless oth	erwise noted.)				Indic	ators for Problema	tic Hydr	ic Soil	5 ³ :	
	Histosol	(A1)			Sandy Gleye	d Matrix (S4)			1 cm Muck (A9) (L	.RR I, J)			
	Histic E	pipedon (A2)			Sandy Redox	(S5)				Coast Prairie Red	ox (A16)	(LRR	F, G, H)
	Black Hi	istic (A3)			Stripped Matr	rix (S6)				Dark Surface (S7)	(LRR G)		
	Hydroge	en Sulfide (A4)			Loamy Mucky	y Mineral (F	1)			High Plains Depre	ssions (l	F16)		
	Stratifie	d Layers (A5) (LRF	R F)		Loamy Gleye	d Matrix (F2	2)			(LRR H outside	of MLR	A 72 &	73)	
	1 cm Mu	uck (A9) (LRR F, G	6, H)	\boxtimes	Depleted Mat	trix (F3)				Reduced Vertic (F	18)			
	Deplete	d Below Dark Surfa	ace (A11)		Redox Dark S	Surface (F6)				Red Parent Mater	ial (TF2)			
	Thick Da	ark Surface (A12)			Depleted Dar	k Surface (F	7)			Very Shallow Dark	c Surface	e (TF 12	2)	
	Sandy N	/lucky Mineral (S1)	1		Redox Depre	ssions (F8)				Other (Explain in I		,		
	2.5 CM	Mucky Peat or Pea	at (S2)(LRR G, H	H) 🗆	High Plains D	Depressions	(F16)			ators of hydrophytic				d
	5 cm Mı	ucky Peat or Peat ((S3) (LRR F)		(MLRA 72 8	& 73 of LRR	H)			ematic.	n, unico.	5 distan		
Res	trictive La	ayer (if present):												
Туре	e:													
Dep	th (Inches):							Hydr	ic Soils Present?	Yes	\boxtimes	No	
Rem	narks:													
HY	DROLOG	SY .												

Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Secondary Indicators (2 or more required) Surface Water (A1) Salt Crust (B11) Surface Soil Cracks (B6) High Water Table (A2) Sparsely Vegetated Concave Surface (B8) Aquatic Invertebrates (B13) Saturation (A3) Hydrogen Sulfide Odor (C1) Drainage Patterns (B10) Water Marks (B1) Dry Season Water Table (C2) Oxidized Rhizospheres along Living Roots (C3) Sediment Deposits (B2) Oxidized Rhizospheres along Living Roots (C3) (where tilled) Drift Deposits (B3) (where not tilled) Crayfish Burrows (C8) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Saturation Visible on Aerial Imagery (C9) Iron Deposits (B5) Thin Muck Surface (C7) Geomorphic Position (D2) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) FAC-Neutral Test (D5) Frost-Heave Hummocks (D7) (LRR F) Water-Stained Leaves (B9) Field Observations: Surface Water Present? Yes No \boxtimes Depth (inches): Water Table Present? Yes No \boxtimes Depth (inches): Saturation Present? Yes No \boxtimes Depth (inches): Wetland Hydrology Present? Yes No \boxtimes (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Remarks:

Project Site:	Black	River Imp	oundment Sit	te		City/County: Penn			i <u>gton</u> Samp		Date:	<u>8-23-</u> 2	2017
Applicant/Owner:	Houst	on Engine	ering, Inc.					State:	MN	Sampling	Point:	<u>18w</u>	
Investigator(s):	Donna	a Jacob ar	nd Mark D Aa	nenson		Sect	tion, Township, I	Range:	<u>S18-T153</u>	N-R44W			
Landform (hillslope,	terrace	, etc.):	ditch bottom		Loc	cal relief (co	oncave, convex,	none):	<u>concave</u>		S	lope (%	6): <u>1</u>
Subregion (LRR):	E		Lat: 48	8.064598		Long:	<u>-96.371093</u>			Datum:	NAD19	33	
Soil Map Unit Name	: <u>Ro</u>	liss loam							NWI class	sification:	<u>Uplan</u>	<u>d</u>	
Are climatic / hydrold	ogic co	nditions or	n the site typic	cal for this t	time of year? Yes	🛛 No	o 🔲 (If no, e	explain in	Remarks.)				
Are Vegetation], So	oil ⊠,	or Hydrolo	gy ⊠,	significantly disturbe	∋d? A	re "Normal Circu	umstances	s" present?	Yes	\boxtimes	No	
Are Vegetation], So	oil □,	or Hydrolo	gy □,	naturally problemati	c? (l	f needed, explai	n any ans	wers in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	\boxtimes	No					
Hydric Soil Present?	Yes	\bowtie	No					
Wetland Hydrology Present?	Yes	\boxtimes	No	Is the Sampling Area within a Wetland?	Yes	\boxtimes	No	
Remarks [.]								

Remarks:

Tree Stratum (Plot Size:)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test Worksheet:
1 2				Number of Dominant Species That Are OBL, FACW, or FAC: (A)
3 4				Total Number of Dominant Species Across All Strata: (B)
Sapling/Shrub Stratum (Plot Size:)		= Total Cover		Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B)
1				Prevalence Index worksheet:
2				Total % Cover of: Multiply by:
3				OBL species x1 =
4				FACW species x2 =
5				FAC species x3 =
		= Total Cover		FACU species x4 =
<u>Herb Stratum (</u> Plot Size: <u>5' radius</u>)				UPL species x5 =
1. <u>Typha sp.</u>	<u>15</u>	x	<u>OBL</u>	Column Totals: (A) (B)
2. <u>Sium suave</u>	<u>10</u>	x	<u>OBL</u>	Prevalence Index = B/A =
3. <u>Rumex crispus</u>	<u>5</u>		FAC	Hydrophytic Vegetation Indicators:
4				x 1 – Rapid Test for Hydrophytic Vegetation
5				2 - Dominance Test is >50%
6 7				3 – Prevalence Index is ≤3.01
8				 4 - Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet)
9				Problematic Hydrophytic Vegetation ¹ (Explain)
10	<u></u>	= Total Cover		¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
Woody Vine Stratum (Plot Size:)	<u> </u>			
1.				
2				
		= Total Cover		
% Bare Ground in Herb Stratum 60				Hydrophytic Vegetation Present? Yes 🛛 No 🗌
Remarks:				
Difinitive shells.				

SOI	L										Sampling Po	oint: 18w			
Prof	ile Descri	iption: (Describe to	o the depth nee	ded to docu	ument the	indicator	or confirm the	absence of in	dicator	s.)					
D	epth	Matrix				Redox Fe	eatures		_						
(incł	nes)	Color (moist)	%	Color (Moi	st)	%	Type ¹	Loc ²	Te	exture		Remar	٢S		
	0-6	<u>2.5Y 2/1</u>	100						r	nucky	<u> </u>				
6	<u>6-14</u>	<u>10Y 6/1</u>	<u>90</u>	<u>2.5Y 5/6</u>		<u>10</u>	<u>C</u>	M		<u>C</u>					
_					-										
_					-										
_					-										
_															
_															
_					-										
¹ Typ	e: C= Cor	ncentration, D=Dep	oletion, RM=Rec	duced Matri	x, CS=Co	vered or (Coated Sand G	Grains. ² Loca	ation: Pl	L=Por	e Lining, M=Matrix				
Hydr	ic Soil In	dicators: (Applica	ble to all LRRs,	unless oth	erwise not	ted.)				Indic	ators for Problemat	ic Hydric	Soils	³ :	
	Histosol	(A1)			Sandy G	leyed Ma	trix (S4)				1 cm Muck (A9) (L	RR I, J)			
	Histic Ep	oipedon (A2)			Sandy R	edox (S5)				Coast Prairie Redo	x (A16) (L	RR I	=, G, H))
	Black Hi	istic (A3)			Stripped	Matrix (S	6)				Dark Surface (S7)	(LRR G)			
	Hydroge	en Sulfide (A4)			Loamy N	lucky Min	ieral (F1)				High Plains Depres	ssions (F1	6)		
	Stratified	d Layers (A5) (LRF	R F)		Loamy G	Bleyed Ma	atrix (F2)				(LRR H outside	of MLRA	72 &	73)	
	1 cm Mu	uck (A9) (LRR F, G	i, H)	\boxtimes	Depleted	d Matrix (F	-3)				Reduced Vertic (F	18)			
	Deplete	d Below Dark Surfa	ace (A11)		Redox D	ark Surfa	ce (F6)				Red Parent Materia	al (TF2)			
	Thick Da	ark Surface (A12)			Depleted	d Dark Su	rface (F7)				Very Shallow Dark	Surface (FF 12)	
	Sandy N	/lucky Mineral (S1)			Redox D	epressior	ns (F8)				Other (Explain in R	,			
	2.5 CM	Mucky Peat or Pea	at (S2)(LRR G, I	H) 🗆	High Pla	ins Depre	essions (F16)				ators of hydrophytic				b
	5 cm Mu	ucky Peat or Peat (S3) (LRR F)		(MLRA	72 & 73	of LRR H)				ematic.	t, unicoo u	ISturic		
Rest	rictive La	ayer (if present):													
Туре	:														
Dept	h (Inches):								Hydr	ic Soils Present?	Yes	\boxtimes	No	
Rem	arks:														

Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Secondary Indicators (2 or more required) Surface Water (A1) Salt Crust (B11) Surface Soil Cracks (B6) High Water Table (A2) \boxtimes Sparsely Vegetated Concave Surface (B8) Aquatic Invertebrates (B13) Saturation (A3) Hydrogen Sulfide Odor (C1) Drainage Patterns (B10) Water Marks (B1) Dry Season Water Table (C2) Oxidized Rhizospheres along Living Roots (C3) Sediment Deposits (B2) Oxidized Rhizospheres along Living Roots (C3) (where tilled) \boxtimes Drift Deposits (B3) (where not tilled) Crayfish Burrows (C8) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Saturation Visible on Aerial Imagery (C9) Iron Deposits (B5) Thin Muck Surface (C7) \boxtimes Geomorphic Position (D2) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) \boxtimes FAC-Neutral Test (D5) Frost-Heave Hummocks (D7) (LRR F) Water-Stained Leaves (B9) Field Observations: Surface Water Present? Yes No \boxtimes Depth (inches): Water Table Present? Yes No \boxtimes Depth (inches): Saturation Present? Yes No \boxtimes Depth (inches): Wetland Hydrology Present? Yes \boxtimes No (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Remarks:

HYDROLOGY

Project Site:	Black	River Im	poundment	Site			Ci	ty/County	/:	Penningt	on	Sampling	Date:	<u>8-23-</u>	2017
Applicant/Owner:	<u>Houst</u>	on Engin	eering, Inc.							State:	MN	Sampling	Point:	<u>19w</u>	
Investigator(s):	Donna	a Jacob a	and Mark D	Aanenso	<u>n</u>		Se	ection, To	wnship, I	Range:	<u>S18-T153</u>	<u>N-R44W</u>			
Landform (hillslope,	terrace	e, etc.):	ditch bott	om		Loc	al relief	(concave	, convex,	none):	<u>concave</u>		S	lope (%): <u>1</u>
Subregion (LRR):	<u>F</u>		Lat:	<u>48.0754</u>	33		Long	: <u>-96.3</u>	71139			Datum:	NAD19	<u>83</u>	
Soil Map Unit Name	: <u>Ro</u>	oliss loan	<u>1</u>								NWI class	sification:	<u>Uplan</u>	<u>d</u>	
Are climatic / hydrold	ogic co	nditions of	on the site t	ypical for	this f	time of year? Yes		No 🗆	(lf no, e	explain in	Remarks.)				
Are Vegetation], S	oil 🛛	l, or Hydi	ology	⊠,	significantly disturbe	d?	Are "Nor	mal Circu	umstances	s" present?	Yes	\boxtimes	No	
Are Vegetation], S	oil 🗌	l, or Hydi	ology [],	naturally problemation	:?	(If neede	ed, explai	n any ans	wers in Re	marks.)			

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	\boxtimes	No					
Hydric Soil Present?	Yes	\boxtimes	No					
Wetland Hydrology Present?	Yes	\boxtimes	No	Is the Sampling Area within a Wetland?	Yes	\boxtimes	No	
Remarks:								

marks

VEGETATION – Use scientific names of plants

Tree Stratum (Plot Size:)	Absolute <u>% Cover</u>		ndicator Status	Dominance Test Worksheet:
1 2				Number of Dominant Species That Are OBL, FACW, or FAC: (A)
3 4				Total Number of Dominant (B)
Sapling/Shrub Stratum (Plot Size:)		= Total Cover		Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B)
1				Prevalence Index worksheet:
2				Total % Cover of: Multiply by:
3				OBL species x1 =
4				FACW species x2 =
5				FAC species x3 =
		= Total Cover		FACU species x4 =
Herb Stratum (Plot Size:)				UPL species x5 =
1				Column Totals: (A) (B)
2				Prevalence Index = B/A =
3				Hydrophytic Vegetation Indicators:
4				1 – Rapid Test for Hydrophytic Vegetation
5				2 - Dominance Test is >50%
6				3 – Prevalence Index is ≤3.0 ¹
7 8.				4 - Morphological Adaptations1 (Provide supporting data in
		=		Remarks or on a separate sheet)
9				<u>x</u> Problematic Hydrophytic Vegetation ¹ (Explain)
10		= Total Cover		¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
Woody Vine Stratum (Plot Size:)				
1				
2				
		= Total Cover		
% Bare Ground in Herb Stratum				Hydrophytic Vegetation Present? Yes 🛛 No 🗌
Remarks:				
Mowed, cannot identify anything. Hydrophytic ve	getation is pre	sent.		

Remnants of Apocynum cannabinum(FAC), Eleocharis palustris(OBL), Agrostis stolonifera(FACW), Phleum pratense(FACU), Phalaris arundinacea(FACW), and Carex sp. (likely FACW or OBL)

SOI	L								Sampling Poi	nt: 19w		
Prof	ile Descr	iption: (Describe to	the depth r	needed to docu	ument the indicat	tor or confirm the	absence of ind	licators.)				
C	Depth	Matrix			Redox	Features		_				
(incl	hes)	Color (moist)	%	Color (Mo	st) %	Type ¹	Loc ²	Texture		Remarks		
	<u>0-6</u>	<u>2.5Y 2/1</u>	<u>100</u>					L				
9	<u>6-14</u>	<u>2.5Y 6/2</u>	<u>90</u>	<u>2.5Y 5/6</u>	<u>10</u>	<u>C</u>	M	<u>C</u>				
_												
_												
_												
_												
_												
_												
¹Тур	e: C= Co	ncentration, D=Depl	letion, RM=F	Reduced Matri	x, CS=Covered o	or Coated Sand G	rains. ² Locat	ion: PL=Por	e Lining, M=Matrix			
Hyd	ric Soil Ir	ndicators: (Applicat	ole to all LRI	Rs, unless oth	erwise noted.)			Indic	ators for Problemati	c Hydric Soi	ls³:	
	Histoso	l (A1)			Sandy Gleyed I	Matrix (S4)			1 cm Muck (A9) (LF	RR I, J)		
	Histic E	pipedon (A2)			Sandy Redox (S	S5)			Coast Prairie Redox	« (A16) (LRR	F, G, H)
	Black H	istic (A3)			Stripped Matrix	(S6)			Dark Surface (S7) (LRR G)		
	Hydroge	en Sulfide (A4)			Loamy Mucky M	Vineral (F1)			High Plains Depress	sions (F16)		
	Stratifie	d Layers (A5) (LRR	F)		Loamy Gleyed	Matrix (F2)			(LRR H outside o	of MLRA 72	& 73)	
	1 cm M	uck (A9) (LRR F, G ,	, H)	\boxtimes	Depleted Matrix	k (F3)			Reduced Vertic (F1	8)		
	Deplete	d Below Dark Surfa	ce (A11)		Redox Dark Su	rface (F6)			Red Parent Materia	l (TF2)		
	Thick D	ark Surface (A12)			Depleted Dark	Surface (F7)			Very Shallow Dark S	Surface (TF '	12)	
	Sandy M	Mucky Mineral (S1)			Redox Depress	sions (F8)			Other (Explain in Re	,		
	2.5 CM	Mucky Peat or Peat	t (S2)(LRR (G, H) 🛛	High Plains Dep	pressions (F16)			ators of hydrophytic v			d
	5 cm M	ucky Peat or Peat (S	53) (LRR F)		(MLRA 72 & 7	73 of LRR H)			ematic.	,		
Rest	trictive L	ayer (if present):										
Туре	e:											
Dept	th (Inches	i):						Hydr	ic Soils Present?	Yes 🛛	No	
Rem	narks:											
Тоо	hard to g	o further than 14"										
HY	DROLOG	GY										
Wet	land Hyd	rology Indicators:										
D								•	1			

Prima	Primary Indicators (minimum of one required; check all that apply) Secondary Indicators (2 or more required)												
	Surface Water (A1)					Salt Crust (B11)			Surface Soil Crack	is (B6)			
	High Water Table (A2))				Aquatic Invertebrates (B13)			Sparsely Vegetate	d Conca	ve Surfa	ce (B8)	
	Saturation (A3)					Hydrogen Sulfide Odor (C1)			Drainage Patterns	(B10)			
	Water Marks (B1)					Dry Season Water Table (C2)			Oxidized Rhizosph	eres alo	ng Living	g Roots (C3)
	Sediment Deposits (B	2)				Oxidized Rhizospheres along Living Root	ts (C3)		(where tilled)				
	Drift Deposits (B3)					(where not tilled)			Crayfish Burrows (C8)			
	Algal Mat or Crust (B4	·)				Presence of Reduced Iron (C4)			Saturation Visible	on Aerial	Imager	y (C9)	
	Iron Deposits (B5)					Thin Muck Surface (C7)		\boxtimes	Geomorphic Positi	on (D2)			
	Inundation Visible on	Aerial Im	agery (E	37)		Other (Explain in Remarks)	\boxtimes	FAC-Neutral Test ((D5)				
	Water-Stained Leav	ves (B9))						Frost-Heave Humn	nocks (D	7) (LRR	F)	
Field	Observations:												
Surfa	ce Water Present?	Yes		No	\boxtimes	Depth (inches):							
Wate	Table Present?	Yes		No	\boxtimes	Depth (inches):							
	ation Present? des capillary fringe)	Yes		No	\boxtimes	Depth (inches):	Wetla	nd Hyo	drology Present?	Yes		No	
Desc	ribe Recorded Data (st	ream gau	uge, mo	nitoring	well, a	aerial photos, previous inspections), if availa	able:						
Rem	Remarks:												

Project Site:	Black Rive	er Impol	undment Site			Cit	ty/County	:	Penningt	on	Sampling	Date:	<u>8-24-</u>	2017
Applicant/Owner:	Houston E	Inginee	ring, Inc.						State:	MN	Sampling	Point:	<u>20u</u>	
Investigator(s):	Donna Ja	cob and	Mark D Aanens	on		Se	ction, Tov	wnship, F	Range:	<u>S2-T152N</u>	-R45W			
Landform (hillslope,	terrace, et	c.): <u>d</u>	itch slope		Loc	al relief ((concave,	convex,	none):	none		5	Slope (%): <u>5</u>
Subregion (LRR):	E		Lat: <u>48.00</u>	<u> 8889</u>		Long	: <u>-96.39</u>	1960			Datum:	NAD19	<u>83</u>	
Soil Map Unit Name	: <u>Mavie</u>	fine sar	idy loam							NWI class	sification:	Uplan	d	
Are climatic / hydrold	ogic conditi	ons on t	he site typical fo	or this	time of year? Yes	× N	lo 🛛	(lf no, e	xplain in	Remarks.)				
Are Vegetation], Soil	⊠,	or Hydrology	⊠,	significantly disturbe	d?	Are "Norr	nal Circu	imstances	s" present?	Yes	\boxtimes	No	
Are Vegetation], Soil	□,	or Hydrology	□,	naturally problemation	c?	(If neede	d, explaii	n any ans	wers in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Bomarka:								
Wetland Hydrology Present?	Yes		No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes
Hydric Soil Present?	Yes	\boxtimes	No					
Hydrophytic Vegetation Present?	Yes		No	\boxtimes				

Remarks:

Tree Stratum (Plot Size:)	Absolute <u>% Cover</u>	Dominant Species?	Indicator Status	Dominance Test Worksheet:
1 2				Number of Dominant Species That Are OBL, FACW, or FAC: 0 (A)
3 4				Total Number of Dominant Species Across All Strata: 2 (B)
Sapling/Shrub Stratum (Plot Size:)		= Total Cover		Percent of Dominant Species That Are OBL, FACW, or FAC: 0 (A/B)
1				Prevalence Index worksheet:
2				Total % Cover of: Multiply by:
3				OBL species x1 =
4				FACW species x2 =
5				FAC species x3 =
		= Total Cover		FACU species x4 =
Herb Stratum (Plot Size: 5' radius)				UPL species x5 =
1. Bromus inermis	<u>30</u>	X	<u>UPL</u>	Column Totals: (A) (B)
2. <u>Cirsium arvense</u>	<u>30</u>	x	FACU	Prevalence Index = B/A =
3. Poa pratensis	<u>20</u>		FACU	Hydrophytic Vegetation Indicators:
4. Ambrosia artemisiifolia	<u>20</u>		FACU	1 – Rapid Test for Hydrophytic Vegetation
5. Rumex crispus	<u>5</u>		FAC	2 - Dominance Test is >50%
6. Apocynum cannabinum	<u>5</u>		FAC	3 – Prevalence Index is ≤3.0¹
7				 4 - Morphological Adaptations¹ (Provide supporting data in
8				Remarks or on a separate sheet)
9				Problematic Hydrophytic Vegetation ¹ (Explain)
10				¹ Indicators of hydric soil and wetland hydrology must be present,
	<u>110</u>	= Total Cover		unless disturbed or problematic.
Woody Vine Stratum (Plot Size:)				
1				
2				
		= Total Cover		
% Bare Ground in Herb Stratum				Hydrophytic Vegetation Present? Yes 🗌 No 🛛
Remarks:				

SOIL								Sampling Point: 20u
Profile Desc	cription: (Describe to	o the depth neede	ed to doc	ument the indicato	or or confirm the	absence of ind	licators.)	
Depth	Matrix			Redox	Features		_	
(inches)	Color (moist)	<u>%</u> C	Color (Mc	oist) %	Type ¹	Loc ²	Texture	Remarks
<u>0-8</u>	<u>2.5Y 2/1</u>	<u>100</u>					Ŀ	
<u>8-13</u>	<u>2.5Y 7/2</u>	<u>100</u>					<u>SiL</u>	
¹ Type: C= C	oncentration, D=Dep	letion, RM=Reduc	ced Matr	rix, CS=Covered o	r Coated Sand G	Frains. ² Locat	ion: PL=Por	re Lining, M=Matrix
Hydric Soil	Indicators: (Applica	ble to all LRRs, u	nless oth	nerwise noted.)			Indic	cators for Problematic Hydric Soils ³ :
	ol (A1)			Sandy Gleyed M	. ,			1 cm Muck (A9) (LRR I, J)
Histic	Epipedon (A2)			Sandy Redox (S	5)			Coast Prairie Redox (A16) (LRR F, G, H)
	Histic (A3)			Stripped Matrix	(S6)			Dark Surface (S7) (LRR G)
Hydro	gen Sulfide (A4)			Loamy Mucky M	lineral (F1)			High Plains Depressions (F16)
Stratifi	ed Layers (A5) (LRF	R F)		Loamy Gleyed N	/latrix (F2)			(LRR H outside of MLRA 72 & 73)
□ 1 cm N	Muck (A9) (LRR F, G	, H)	\boxtimes	Depleted Matrix	(F3)			Reduced Vertic (F18)
Deplet	ted Below Dark Surfa	ace (A11)		Redox Dark Sur	face (F6)			Red Parent Material (TF2)
	Dark Surface (A12)			Depleted Dark S				Very Shallow Dark Surface (TF 12)
	Mucky Mineral (S1)			Redox Depressi			3Indi	Other (Explain in Remarks) cators of hydrophytic vegetation and wetland
	Mucky Peat or Pea			High Plains Dep	. ,			ology must be present, unless disturbed or
	Mucky Peat or Peat (S3) (LRR F)		(MLRA 72 & 7	3 of LRR H)		prob	lematic.
	Layer (if present):							
Туре:	、							
Depth (Inche	es):						Hydi	ric Soils Present? Yes 🛛 No 🗌
Remarks:								
HYDROLC	GY							
Wetland Hy	drology Indicators:							
Primary Indi	cators (minimum of c	ne required; chec	k all tha	t apply)			Secon	dary Indicators (2 or more required)
Surfac	ce Water (A1)			Salt Crust (B11)				Surface Soil Cracks (B6)
High V	Water Table (A2)			Aquatic Inverteb	rates (B13)			Sparsely Vegetated Concave Surface (B8)
□ Satura	ation (A3)			Hydrogen Sulfid	e Odor (C1)			Drainage Patterns (B10)

(where tilled)
Oxidized Rhizospheres along Living Roots (C3)
Brailiage Facilité (BTO)

Crayfish	Burrows	(C8)

Saturation Visible on Aerial Imagery (C9)

- Geomorphic Position (D2)
- FAC-Neutral Test (D5)

Wetland Hydrology Present?

Frost-Heave Hummocks (D7) (LRR F)

Yes

No

 \boxtimes

Surface Water Present? Yes No \boxtimes Depth (inches): Water Table Present? Yes No \boxtimes Depth (inches): Saturation Present? Yes \boxtimes

No

Dry Season Water Table (C2)

Presence of Reduced Iron (C4)

(where not tilled)

Thin Muck Surface (C7)

Depth (inches):

Other (Explain in Remarks)

Oxidized Rhizospheres along Living Roots (C3)

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:

Water Marks (B1)

Drift Deposits (B3)

Iron Deposits (B5)

Field Observations:

(includes capillary fringe)

Sediment Deposits (B2)

Algal Mat or Crust (B4)

Inundation Visible on Aerial Imagery (B7)

Water-Stained Leaves (B9)

Project Site:	Black	River Im	poundme	nt Site				С	ity/Coun	ity:	Penningt	on	Sampling	Date:	<u>8-24-</u>	2017
Applicant/Owner:	<u>Houst</u>	ton Engir	neering, li	<u>1C.</u>							State:	MN	Sampling	Point:	<u>20w</u>	
Investigator(s):	Donna	a Jacob	and Mark	D Aanen	son			S	ection, T	Township, I	Range:	<u>S2-T152N</u>	I-R45W			
Landform (hillslope,	terrace	e, etc.):	ditch b	ottom			Loc	al relief	(concav	ve, convex,	none):	concave		5	Slope (%): <u>1</u>
Subregion (LRR):	E		La	t: <u>48.00</u>	6908			Lon	g: <u>-96.</u>	391970			Datum:	NAD19	83	
Soil Map Unit Name	: <u>M</u>	avie fine	sandy loa	<u>im</u>								NWI class	sification:	Uplar	d	
Are climatic / hydrold	ogic co	nditions	on the sit	e typical f	or this	time of year?	Yes	\boxtimes	No 🗆	l (lf no, e	explain in	Remarks.)				
Are Vegetation], S	oil 🗵	, or H	drology	X,	significantly d	listurbe	d?	Are "No	ormal Circu	umstances	s" present?	Yes	\boxtimes	No	
Are Vegetation], S	oil 🗌], or H	drology	□,	naturally prob	lematic	?	(If need	ded, explai	n any ans	wers in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Wetland Hydrology Present?	Yes	\boxtimes	No	Is the Sampling Area within a Wetland?	Yes	\boxtimes	No	
				Is the Sompling Area within a Watland?	Vaa		No	
Hydric Soil Present?	Yes		No					
Hydrophytic Vegetation Present?	Yes	\boxtimes	No					

Remarks:

1	Tree Stratum (Plot Size:)	Absolute <u>% Cover</u>	Dominant Species?	Indicator Status	Dominance Test Worksheet:
4.					
Saping/Shrub Stratum (Plot Size:	3 4				
2.	Sapling/Shrub Stratum (Plot Size:)		= Total Cover		
3.	1				Prevalence Index worksheet:
4.	2				Total % Cover of: Multiply by:
5.	3				OBL species x1 =
Herb Stratum (Plot Size: 4' x 6') FACU species x4 = 1. Sphagnum sp. 60 x OBL Column Totals: (A) (B) 2. Typha sp. 10 OBL Prevalence Index = B/A = (B) 3. Beckmannia syzigachne 10 OBL Hydrophytic Vegetation Indicators: (A) (B) 4. Rumex crispus 10 FACU 2 - Dominance Test is >50% (A) (B) 5. Taraxacum officinale 10 FACU 2 - Dominance Test is >50% (A) (B) 6.	4				FACW species x2 =
Herb Stratum (Plot Size: 4'x 6') UPL species x5 = 1. Sphagnum sp. 60 x QBL Column Totals: (A) (B) 2. Typha sp. 10	5				FAC species x3 =
1. Sphagnum sp. 60 x OBL Column Totals: (A) (B) 2. Typha sp. 10 OBL Prevalence Index = B/A = 3. Beckmannia syzigachne 10 OBL Hydrophytic Vegetation Indicators: 4. Rumex crispus 10 FAC x 1 - Rapid Test for Hydrophytic Vegetation 5. Taraxacum officinale 10 FACU 2 - Dominance Test is >50% 6			= Total Cover		FACU species x4 =
2. Typha sp. 10 OBL Prevalence Index = B/A = 3. Beckmannia syzigachne 10 OBL Hydrophytic Vegetation Indicators: 4. Rumex crispus 10 FAC x 1 - Rapid Test for Hydrophytic Vegetation 5. Taraxacum officinale 10 FACU 2 - Dominance Test is >50% 6	Herb Stratum (Plot Size: 4' x 6')				UPL species x5 =
3. Beckmannia syzigachne 10 OBL Hydrophytic Vegetation Indicators: 4. Rumex crispus 10 FAC x 1 - Rapid Test for Hydrophytic Vegetation 5. Taraxacum officinale 10 FACU 2 - Dominance Test is >50% 6	1. <u>Sphagnum sp.</u>	<u>60</u>	X	<u>OBL</u>	Column Totals: (A) (B)
4. Rumex crispus 10 FAC x 1 – Rapid Test for Hydrophytic Vegetation 5. Taraxacum officinale 10 FACU 2 - Dominance Test is >50% 6.	2. <u>Typha sp.</u>	<u>10</u>		<u>OBL</u>	Prevalence Index = B/A =
5. Taraxacum officinale 10 FACU 2 - Dominance Test is >50% 6.	3. Beckmannia syzigachne	<u>10</u>		<u>OBL</u>	Hydrophytic Vegetation Indicators:
6.	4. Rumex crispus	<u>10</u>		FAC	x 1 – Rapid Test for Hydrophytic Vegetation
7	5. Taraxacum officinale	<u>10</u>		FACU	2 - Dominance Test is >50%
8	6				3 – Prevalence Index is ≤3.0¹
8.	7				
10	8				
100 = Total Cover Woody Vine Stratum (Plot Size:)	9				Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot Size:)	10				
1		<u>100</u>	= Total Cover		unless disturbed or problematic.
2.	Woody Vine Stratum (Plot Size:)				
	1				
% Bare Ground in Herb Stratum Hydrophytic Vegetation Present? Yes No	2				
			= Total Cover		
	% Bare Ground in Herb Stratum				Hydrophytic Vegetation Present? Yes 🛛 No 🗌
	Remarks:				

SOIL									Sampling Po	oint: 20w				
Profile	Description: (Describe t	to the depth n	eeded to doc	cument the	indicato	r or confirm the a	absence of inc	dicators.)						
Dep	oth Matrix				Redox F	eatures		_						
(inche	s) Color (moist)	%	Color (Mo	oist)	%	Type ¹	Loc ²	Texture	<u> </u>	Remark	S			
<u>0-</u>	4 <u>2.5Y 2/1</u>	<u>100</u>		-				L						
<u>4-</u>	<u>12</u> <u>2.5Y 6/2</u>	<u>90</u>	<u>2.5Y 5/6</u>	<u>6</u>	<u>10</u>	<u>C</u>	M	VFS	<u> </u>					
				-										
				-										
				-										
				-										
¹ Type:	C= Concentration, D=Dep	pletion, RM=F	Reduced Mati	rix, CS=Co	vered or	Coated Sand G	rains. ² Locat	tion: PL=Por	re Lining, M=Matrix					
Hydric	: Soil Indicators: (Applica	able to all LR	Rs, unless oth	nerwise not	ed.)			Indic	cators for Problemat	ic Hydric	Soils ³ :			
🗆 +	Histosol (A1)			Sandy G	leyed M	atrix (S4)			1 cm Muck (A9) (L	RR I, J)				
D +	Histic Epipedon (A2)			Sandy R	edox (S	5)			Coast Prairie Redo	x (A16) (L	RR F, G,	H)		
	Black Histic (A3)			Stripped	Matrix (S6)			Dark Surface (S7)	(LRR G)				
D +	Hydrogen Sulfide (A4)			Loamy N	lucky Mi	ineral (F1)			High Plains Depres	ssions (F16	5)			
	Stratified Layers (A5) (LRF	R F)		Loamy G	Bleyed M	latrix (F2)			(LRR H outside of MLRA 72 & 73)					
	1 cm Muck (A9) (LRR F, G	G, H)		Depleted	Matrix ((F3)			Reduced Vertic (F1	18)				
⊠ [Depleted Below Dark Surfa	ace (A11)		Redox D	ark Surf	ace (F6)			Red Parent Materia	al (TF2)				
י ם	Thick Dark Surface (A12)			Depleted	Dark Si	urface (F7)			Very Shallow Dark	Surface (1	F 12)			
	Sandy Mucky Mineral (S1))		Redox D	epressio	ons (F8)			Other (Explain in R	,				
	2.5 CM Mucky Peat or Pea		G, H) 🛛	High Pla	ins Depr	ressions (F16)			cators of hydrophytic ology must be presen					
	5 cm Mucky Peat or Peat ((S3) (LRR F)		(MLRA	72 & 73	of LRR H)			lematic.	.,		·		
Restrie	ctive Layer (if present):													
Type:														
Depth	(Inches):							Hydi	ric Soils Present?	Yes	🛛 No			
Remar	ks:													
HYDR	ROLOGY													

Wetla	Wetland Hydrology Indicators:												
Prima	ary Indicators (minimun	n of one r	equired	; check	all tha	t apply)	Se	econdary Indicators (2	or more	required)		
	Surface Water (A1)					Salt Crust (B11)		Surface Soil Crac	ks (B6)				
	High Water Table (A2	2)				Aquatic Invertebrates (B13)	Sparsely Vegetated Concave Surface (B8)						
Saturation (A3) Hydrogen Sulfide Odor (C1)								Drainage Patterns	s (B10)				
	Water Marks (B1)					Dry Season Water Table (C2)		Oxidized Rhizosp	heres alo	ng Living	g Roots (C3)	
	Sediment Deposits (B	32)				Oxidized Rhizospheres along Living Roo	ts (C3)	(where tilled)					
	Drift Deposits (B3)					(where not tilled)		Crayfish Burrows	(C8)				
	Algal Mat or Crust (B4	4)				Presence of Reduced Iron (C4)		Saturation Visible	on Aeria	Imager	(C9)		
□ Iron Deposits (B5) □ Thin Muck Surface (C7)						Geomorphic Position (D2)							
Inundation Visible on Aerial Imagery (B7) In Other (Explain in Remarks)							\boxtimes	FAC-Neutral Test	(D5)				
	Water-Stained Lea	ves (B9))					Frost-Heave Hum	mocks (E	07) (LRR	F)		
Field	Observations:												
Surfa	ce Water Present?	Yes		No	\boxtimes	Depth (inches):							
Wate	r Table Present?	Yes		No	\boxtimes	Depth (inches):							
	ation Present? des capillary fringe)	Yes		No	\boxtimes	Depth (inches):	Wetland H	ydrology Present?	Yes	\boxtimes	No		
Desc	ribe Recorded Data (s	tream gau	uge, mo	onitoring	g well, a	aerial photos, previous inspections), if avail	lable:						
Remarks:													

Project Site:	Black	River Impo	oundment Site			City	/County:	Penningt	on	Sampling	Date:	<u>8-24-</u>	2017
Applicant/Owner:	Housto	on Engine	ering, Inc.					State:	MN	Sampling	Point:	<u>21u</u>	
Investigator(s):	Donna	Jacob an	d Mark D Aanen	son		Sec	tion, Township, I	Range:	<u>S1-T152N</u>	I-R45W			
Landform (hillslope,	terrace	, etc.):	ditch slope		Loc	al relief (c	oncave, convex,	none):	none		S	lope (%): <u>5</u>
Subregion (LRR):	E		Lat: <u>48.00</u>	07077		Long:	<u>-96.353733</u>			Datum:	NAD19	<u>83</u>	
Soil Map Unit Name	: <u>Ro</u>	sewood fir	ne sandy loam, A	Aspen F	Parkland				NWI class	sification:	Uplan	<u>d</u>	
Are climatic / hydrold	ogic cor	nditions on	the site typical f	or this	time of year? Yes	🛛 No	o 🔲 (If no, e	explain in	Remarks.)				
Are Vegetation], Sc	oil ⊠,	or Hydrology	X,	significantly disturbe	d? A	re "Normal Circu	umstances	s" present?	Yes	\boxtimes	No	
Are Vegetation], Sc	oil □,	or Hydrology	□,	naturally problemation	l) ?:	lf needed, explai	n any ans	wers in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	No	\boxtimes				
Hydric Soil Present?	Yes	No	\boxtimes				
Wetland Hydrology Present?	Yes	No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes
Remarks:							

Forest

Tree Stratum (Plot Size: 15' radius)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test V	Vorksheet:				
1. Quercus macrocarpa	<u>10</u>	X	FACU	Number of Domina		3	(A)		
2. Populus tremuloides	<u>10</u>	x	FACU	That Are OBL, FAC	CW, or FAC:	<u>3</u>	(A)		
3 4.				Total Number of Do Species Across All		<u>9</u>	(B)		
<u>Sapling/Shrub Stratum</u> (Plot Size: 10' radius)	<u>20</u>	= Total Cov	rer	Percent of Dominal That Are OBL, FAC		<u>30</u>	(A/B)		
1. Prunus virginiana	<u>15</u>	x	FACU	Prevalence Index	worksheet:				
2. <u>Cornus alba</u>	<u>5</u>	x	FACW	Total % Cov	ver of:	Multiply	<u>/ by:</u>		
3. Populus balsamifera	<u>5</u>	x	FACW	OBL species	<u>0</u>	x1 =	<u>0</u>		
4. <u>Viburnum opulus</u>	<u>5</u>	X	FAC	FACW species	<u>15</u>	x2 =	<u>30</u>		
5. Symphoricarpos albus	<u>5</u>	X	UPL	FAC species	<u>0</u>	x3 =	<u>0</u>		
	<u>35</u>	= Total Cov	er	FACU species	<u>120</u>	x4 =	<u>480</u>		
Herb Stratum (Plot Size: 5' radius)				UPL species	<u>15</u>	x5 =	<u>75</u>		
1. Elymus repens	<u>35</u>	X	FACU	Column Totals:	<u>150</u>	(A)	<u>585</u>	(B)	
2. <u>Toxicodendron radicans</u>	<u>25</u>	x	FACU		Prevalence	e Index = B	/A = <u>3.9</u>		
3. Poa pratensis	<u>10</u>		<u>FACU</u>	Hydrophytic Vege	tation Indic	ators:			
4. Elymus canadensis	<u>10</u>		FACU	1 – Rap	oid Test for H	lydrophytic	Vegetatio	'n	
5. Solidago canadensis	<u>5</u>		FACU	2 - Don	ninance Test	is >50%			
6. Symphyotrichum novae-angliae	<u>5</u>		FACW	3 – Pre	valence Inde	ex is ≤3.0¹			
7. Lithospermum latifolium	<u>5</u>		<u>UPL</u>		phological A		(Provide	supporting	data in
8					marks or on			supporting	uala III
9				Probler	natic Hydrop	hytic Vege	tation ¹ (Ex	plain)	
10				¹ Indicators of hydri	c soil and we	etland hydro	ology mus	t be presen	t,
	<u>95</u>	= Total Cov	er	unless disturbed or	problematic			-	
Woody Vine Stratum (Plot Size:)									
1									
2									
		= Total Cov	er						
% Bare Ground in Herb Stratum				Hydrophytic Vege	tation Pres	ent? Y	'es 🗌	No	\boxtimes

SOIL										Sampling Point: 21u
Profi	le Descr	ription: (Describe to t	he depth need	ed to doc	ument the i	ndicator	or confirm the a	bsence of inc	dicators.)	
De	epth	Matrix			F	Redox Fe	eatures		_	
(inch	ies)	Color (moist)	<u>%</u> (Color (Mo	ist)	%	Type ¹	Loc ²	Textu	Ire Remarks
<u>0</u>	-12	<u>2.5Y 2/1</u>	<u>100</u>		-				<u>L</u> :	<u>s</u>
<u>12</u>	<u>2-15</u>	<u>2.5Y 4/1</u>	<u>100</u>		-				<u>L:</u>	<u>s</u>
_					_					
_					_					
_					_					
_					_					
_					_					
_					_					
¹ Type	e: C= Co	ncentration, D=Deple	tion, RM=Redu	ced Matr	ix, CS=Cov	vered or (Coated Sand G	rains. ² Locat	tion: PL=P	Pore Lining, M=Matrix
Hydr	ic Soil Ir	ndicators: (Applicable	e to all LRRs, u	inless oth	erwise note	ed.)			Inc	dicators for Problematic Hydric Soils ³ :
	Histoso	l (A1)			Sandy Gl	eyed Ma	trix (S4)			1 cm Muck (A9) (LRR I, J)
	Histic E	pipedon (A2)			Sandy Re	edox (S5)			Coast Prairie Redox (A16) (LRR F, G, H)
	Black H	istic (A3)			Stripped I	Matrix (S	6)			Dark Surface (S7) (LRR G)
	Hydroge	en Sulfide (A4)			Loamy M	ucky Min	eral (F1)			High Plains Depressions (F16)
	Stratifie	d Layers (A5) (LRR F	-)		Loamy G	leyed Ma	ıtrix (F2)			(LRR H outside of MLRA 72 & 73)
	1 cm M	uck (A9) (LRR F, G, I	H)		Depleted	Matrix (F	-3)			Reduced Vertic (F18)
	Deplete	d Below Dark Surface	e (A11)		Redox Da	ark Surfa	ce (F6)			Red Parent Material (TF2)
	Thick D	ark Surface (A12)			Depleted	Dark Su	rface (F7)			Very Shallow Dark Surface (TF 12)
	Sandy M	Mucky Mineral (S1)			Redox De	epressior	ns (F8)			Other (Explain in Remarks)
	2.5 CM	Mucky Peat or Peat	(S2)(LRR G, H))	High Plai	ns Depre	ssions (F16)			dicators of hydrophytic vegetation and wetland drology must be present, unless disturbed or
	5 cm M	ucky Peat or Peat (S	3) (LRR F)		(MLRA	72 & 73	of LRR H)			oblematic.
Restr	rictive L	ayer (if present):								
Type:	:									
Depth	h (Inches	s):							Ну	vdric Soils Present? Yes 🗌 No 🛛
Rema	arks:									
HYD	ROLO	GY								
		rology Indicators:								
Prima	ary Indica	ators (minimum of one	e required; che	ck all tha	t apply)				Seco	ondary Indicators (2 or more required)
	-	e Water (A1)			Salt Crus	t (B11)				Surface Soil Cracks (B6)
		ater Table (A2)				. ,	ites (B13)			Sparsely Vegetated Concave Surface (B8)
		tion (A3)					Odor (C1)			Drainage Patterns (B10)
		Marks (B1)			, ,		Table (C2)			Oxidized Rhizospheres along Living Roots (C3)
		ent Deposits (B2)					. ,	ng Roots (C3		(where tilled)

	(wł	nere	till

- Saturation Visible on Aerial Imagery (C9)
- Geomorphic Position (D2)
- FAC-Neutral Test (D5)

Frost-Heave Hur	nmocks (D7) (LRR F)
110011100101101		/

Wetland Hydrology Present? Yes

Frost-Heave	Hummocks	(D7)	(LRR F

(where not tilled)

Presence of Reduced Iron (C4)

Other (Explain in Remarks)

Thin Muck Surface (C7)

Depth (inches):

Depth (inches):

Depth (inches):

Field Observations: Surface Water Present? Yes Water Table Present? Yes

Water-Stained Leaves (B9)

Drift Deposits (B3)

Iron Deposits (B5)

Algal Mat or Crust (B4)

Inundation Visible on Aerial Imagery (B7)

 \boxtimes (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

 \boxtimes

 \boxtimes

Yes

No

No

No

Remarks:

Saturation Present?

 \boxtimes

No

Project Site:	Black I	River Impo	undment Site	2		Cit	y/County:	Penning	on	Sampling	Date:	<u>8-24-</u>	2017
Applicant/Owner:	Housto	on Enginee	ering, Inc.					State:	MN	Sampling	Point:	<u>21w</u>	
Investigator(s):	Donna	Jacob and	d Mark D Aan	enson		Se	ction, Township,	Range:	<u>S1-T152N</u>	-R45W			
Landform (hillslope,	terrace,	etc.):	ditch bottom		Lo	cal relief (concave, convex	, none):	<u>concave</u>		S	lope (%): <u>1</u>
Subregion (LRR):	E		Lat: <u>48</u> .	.006931		Long	: <u>-96.353810</u>			Datum:	NAD198	33	
Soil Map Unit Name	: <u>Ro</u>	sewood fir	e sandy loam	n, Aspen F	Parkland				NWI class	sification:	Uplan	<u>d</u>	
Are climatic / hydrold	ogic cor	ditions on	the site typica	al for this t	time of year? Yes	M N	lo 🔲 (If no,	explain in	Remarks.)				
Are Vegetation], So	oil ⊠,	or Hydrolog	ıy ⊠,	significantly disturt	ed?	Are "Normal Circ	umstance	s" present?	Yes	\boxtimes	No	
Are Vegetation], Sc	oil □,	or Hydrolog	ıy □ ,	naturally problema	lic?	(If needed, expla	in any ans	wers in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Remarks:	100		110	is the sampling Area within a wetland?	res		No	
Wetland Hydrology Present?	Yes	\boxtimes	No	Is the Sampling Area within a Wetland?	Yes	57	Na	
Hydric Soil Present?	Yes	\bowtie	No					
Hydrophytic Vegetation Present?	Yes	\boxtimes	No					

Remarks:

Tree Stratum (Plot Size:)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test Worksheet:
1				Number of Dominant Species (A)
2				That Are OBL, FACW, or FAC: (A)
3				Total Number of Dominant
4				Species Across All Strata:
Sapling/Shrub Stratum (Plot Size:)		= Total Cove	·	Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B)
1				Prevalence Index worksheet:
2				Total % Cover of: Multiply by:
3.				OBL species x1 =
4.				FACW species x2 =
5.				FAC species x3 =
		= Total Cove		FACU species x4 =
<u>Herb Stratum (</u> Plot Size: <u>4' x 6'</u>)				UPL species x5 =
1. Equisetum hyemale	<u>20</u>	X	<u>FACW</u>	Column Totals: (A) (B)
2. <u>Typha sp.</u>	<u>5</u>		<u>OBL</u>	Prevalence Index = B/A =
3. Phalaris arundinacea	<u>5</u>		FACW	Hydrophytic Vegetation Indicators:
4				x 1 – Rapid Test for Hydrophytic Vegetation
5				2 - Dominance Test is >50%
6				3 – Prevalence Index is ≤3.0 ¹
7				4 - Morphological Adaptations ¹ (Provide supporting data in
8				Remarks or on a separate sheet)
9				Problematic Hydrophytic Vegetation ¹ (Explain)
10				¹ Indicators of hydric soil and wetland hydrology must be present,
	<u>30</u>	= Total Cove	r	unless disturbed or problematic.
Woody Vine Stratum (Plot Size:)				
1				
2				
		= Total Cove	r	
% Bare Ground in Herb Stratum 75				Hydrophytic Vegetation Present? Yes 🛛 No 🗌
Remarks:				
Herbicide.				

	S	О	I	L
--	---	---	---	---

Sampling Point: 21w

Profile Desc	cription: (Describ	e to the	depth r	needed	to doc	ument th	e indicator o	or confirm the a	absence	of indicato	ors.)	Sampling Fornt. 2 Tw
Depth	Mati		aopuri				Redox Fe					
(inches)	Color (moist)		%	Co	lor (Mo	ist)	%	Type ¹	Loc ²	2 -	Texture	e Remarks
<u>0-4</u>	2.5Y 2/1		100								SiL	
<u>4-7</u>	2.5Y 5/3		100								<u>S</u>	•
<u>4 1</u> 7-15	<u>2.5Y 6/1</u>	-	100									
		-	100							_	<u>S</u>	
<u>15+</u>	<u>2.5Y 6/1</u>	_	100								<u>C</u>	
		_										
		_										
										_		
17												
			-			-		coated Sand G	rains. 4	Location: I		bre Lining, M=Matrix
_	Indicators: (Appl	licable to	all LRI	Rs, uni	_		,				_	icators for Problematic Hydric Soils ³ :
	ol (A1)					-	Gleyed Mat					1 cm Muck (A9) (LRR I, J)
	Epipedon (A2)					-	Redox (S5)					Coast Prairie Redox (A16) (LRR F, G, H)
	Histic (A3)						d Matrix (Se					Dark Surface (S7) (LRR G)
	gen Sulfide (A4)					Loamy	Mucky Mine	eral (F1)				High Plains Depressions (F16)
□ Stratifi	ed Layers (A5) (L	.RR F)				Loamy	Gleyed Mat	trix (F2)				(LRR H outside of MLRA 72 & 73)
1 cm N	Muck (A9) (LRR F	, G , H)			\boxtimes	Deplete	ed Matrix (F	3)				Reduced Vertic (F18)
Deplet	ed Below Dark S	urface (A	411)			Redox	Dark Surfac	ce (F6)				Red Parent Material (TF2)
Thick I	Dark Surface (A1	2)				Deplete	ed Dark Sur	face (F7)				Very Shallow Dark Surface (TF 12)
Sandy	Mucky Mineral (S	S1)				Redox	Depression	s (F8)			21	Other (Explain in Remarks)
2.5 CN	A Mucky Peat or F	Peat (S2)(LRR (G, H)		High Pl	lains Depres	ssions (F16)				licators of hydrophytic vegetation and wetland rology must be present, unless disturbed or
□ 5 cm N			(MLR	A 72 & 73 c	of LRR H)				plematic.			
Restrictive	Layer (if present):										
Туре:												
Depth (Inche	es):										Hyd	Iric Soils Present? Yes 🛛 No 🗌
Remarks:												
HYDROLO	GY											
Wetland Hy	drology Indicato	rs:										
Primary Indic	cators (minimum	of one re	equired;	, check	all that	apply)					Secor	ndary Indicators (2 or more required)
Surfac	ce Water (A1)					Salt Cr	ust (B11)					Surface Soil Cracks (B6)
🔲 High \	Water Table (A2)					Aquatio	c Invertebra	tes (B13)				Sparsely Vegetated Concave Surface (B8)
□ Satura	ation (A3)					Hydrog	en Sulfide (Odor (C1)				Drainage Patterns (B10)
Water	Marks (B1)					Dry Se	ason Water	Table (C2)				Oxidized Rhizospheres along Living Roots (C3)
Sedim	nent Deposits (B2)				Oxidize	ed Rhizosph	eres along Livi	ing Roots	s (C3)		(where tilled)
🔲 Drift D	Deposits (B3)					(where	not tilled)					Crayfish Burrows (C8)
Algal	Mat or Crust (B4)					Presen	ce of Reduc	ced Iron (C4)				Saturation Visible on Aerial Imagery (C9)
Iron D	eposits (B5)					Thin M	uck Surface	e (C7)				Geomorphic Position (D2)
	ation Visible on A	erial Ima	agery (E	37)			Explain in F	. ,				FAC-Neutral Test (D5)
	r-Stained Leav		0,0			,	·	,				Frost-Heave Hummocks (D7) (LRR F)
Field Obser		/										
Surface Wat		Yes		No	\boxtimes	De	pth (inches):				
Water Table		Yes		No			pth (inches	,				
Saturation P			_							Matter		
	pillary fringe)	Yes		No		De	pth (inches).		vvetiand	u nyar	rology Present? Yes 🛛 No 🗌
Describe Re	ecorded Data (stre	eam gau	ige, mo	nitoring	g well, a	erial pho	otos, previou	us inspections)	, if availa	able:		

Remarks:

Project Site:	Black F	River Impo	undment Site			City/	/County:	Penning	ton	Sampling	Date:	<u>8-24-2</u>	2017
Applicant/Owner:	Housto	n Enginee	ring, Inc.					State:	MN	Sampling	Point:	<u>22u</u>	
Investigator(s):	Donna	Jacob and	Mark D Aaner	nson		Sect	tion, Township, I	Range:	<u>S5-T152N</u>	I-R44W			
Landform (hillslope,	terrace,	etc.): <u>c</u>	litch slope		Loc	al relief (co	oncave, convex,	none):	none		S	Slope (%	%): <u>5</u>
Subregion (LRR):	E		Lat: <u>48.0</u>	06635		Long:	<u>-96.322195</u>			Datum:	NAD19	<u>83</u>	
Soil Map Unit Name	: <u>Cle</u>	arwater da	У						NWI class	sification:	<u>Uplan</u>	<u>d</u>	
Are climatic / hydrold	ogic con	ditions on	the site typical	for this	time of year? Yes	🛛 No) 🗌 (If no, e	explain in	Remarks.)				
Are Vegetation], So	il ⊠,	or Hydrology	X,	significantly disturbe	d? A	re "Normal Circu	umstance	s" present?	Yes	\boxtimes	No	
Are Vegetation], So	il □,	or Hydrology	□,	naturally problemation	;? (l'	f needed, explai	n any ans	wers in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Remarks:					is the Sampling Area within a wettand?	res	NO	
Wetland Hydrology Present?	Yes		No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\boxtimes
Hydric Soil Present?	Yes	\bowtie	No					
Hydrophytic Vegetation Present?	Yes		No	\boxtimes				

Remarks:

Tree Stratum (Plot Size:)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test V	Vorksheet:				
1 2				Number of Domina That Are OBL, FAC		<u>0</u>	(A)		
3 4				Total Number of Do Species Across All		<u>2</u>	(B)		
Sapling/Shrub Stratum (Plot Size:)		= Total Cover		Percent of Dominal That Are OBL, FAC		<u>0</u>	(A/B)		
1				Prevalence Index	worksheet:				
2				Total % Cov	er of:	Multiply	by:		
3				OBL species	<u>o</u>	x1 =	<u>0</u>		
4				FACW species	<u>10</u>	x2 =	<u>20</u>		
5				FAC species	<u>10</u>	x3 =	<u>30</u>		
		= Total Cover		FACU species	<u>75</u>	x4 =	<u>300</u>		
Herb Stratum (Plot Size: 5' radius)				UPL species	<u>5</u>	x5 =	<u>25</u>		
1. Elymus repens	<u>40</u>	<u>x</u>	FACU	Column Totals:	<u>100</u>	(A)	<u>375</u>	(B)	
2. <u>Cirsium arvense</u>	<u>20</u>	x	FACU		Prevalence In	ndex = B/A	(= <u>3.75</u>		
3. Asclepias syriaca	<u>5</u>		<u>UPL</u>	Hydrophytic Vege	tation Indicat	tors:			
4. Melilotus officinalis	<u>5</u>		FACU	1 – Rap	oid Test for Hy	drophytic	Vegetation		
5. Solidago canadensis	<u>5</u>		FACU	2 - Dom	ninance Test is	s >50%			
6. Solidago gigantea	<u>5</u>		FAC	3 – Pre	valence Index	is ≤3 0¹			
7. Sonchus arvensis	<u>5</u>		FAC		phological Ada			monting	data in
8. Poa pratensis	<u>5</u>		FACU		marks or on a			ipporting (
9. Thalictrum dioicum	<u>5</u>		FACW	Problem	natic Hydroph	ytic Vegeta	ation ¹ (Exp	lain)	
10. Symphyotrichum lanceolatum	<u>5</u>		FACW	¹ Indicators of hydrid	c soil and wet	and hydrol	logy must l	be present	t,
	<u>100</u>	= Total Cover		unless disturbed or	problematic.	-		-	
Woody Vine Stratum (Plot Size:)									
1									
2									
		= Total Cover							
% Bare Ground in Herb Stratum				Hydrophytic Vege	tation Preser	nt? Ye	s 🗆	No	\boxtimes
Remarks:									

001

Sampling Point: 22u

Profile Desc	cription: (Describ	e to the	depth n	eeded	to doc	ument th	e indicator	r or confirm the	absence o	of indicate	ors.)		
Depth	Mat	rix					Redox F	eatures					
(inches)	Color (moist)		%	Co	lor (Mo	ist)	%	Type ¹	Loc ²		Texture	e Remarks	
<u>0-4</u>	2.5Y 2/2		100	-							<u>SL</u>		
<u>4-14</u>	<u>2.5Y 5/2</u>		<u>95</u>	2	.5Y 4/4		<u>5</u>	<u>C</u>	M		CL		
		_								_			
		_								_			
		_								_			
		_								_			
		_								_			
		_								_			
¹ Type: C= C	oncentration, D=[Depletio	n, RM=F	Reduce	ed Matr	x, CS=C	overed or	Coated Sand C	Grains. ² L	ocation:	PL=Po	re Lining, M=Matrix	
Hydric Soil	Indicators: (App	licable t	o all LRF	Rs, unl	ess oth	erwise n	oted.)				Indi	cators for Problematic Hydric Soils ³ :	
☐ Histos	ol (A1)					Sandy	Gleyed Ma	atrix (S4)				1 cm Muck (A9) (LRR I, J)	
Histic	Epipedon (A2)					Sandy	Redox (St	5)				Coast Prairie Redox (A16) (LRR F, G, H)	
Black	Histic (A3)					Strippe	d Matrix (S	S6)				Dark Surface (S7) (LRR G)	
Hydro	gen Sulfide (A4)					Loamy	Mucky Mi	neral (F1)				High Plains Depressions (F16)	
□ Stratifi	ied Layers (A5) (L	RR F)				Loamy	Gleyed M	atrix (F2)				(LRR H outside of MLRA 72 & 73)	
🔲 1 cm M	Muck (A9) (LRR F	, G , H)			\boxtimes	Deplete	ed Matrix ((F3)				Reduced Vertic (F18)	
Deplet	ted Below Dark S	urface (A11)			Redox	Dark Surfa	ace (F6)				Red Parent Material (TF2)	
Thick	Dark Surface (A1	2)				Deplete	ed Dark Su	urface (F7)				Very Shallow Dark Surface (TF 12)	
Sandy	Mucky Mineral (S1)				Redox	Depressio	ons (F8)				Other (Explain in Remarks)	
2.5 CM	M Mucky Peat or I	Peat (S2	2)(LRR (G, H)		High Pl	lains Depr	essions (F16)				icators of hydrophytic vegetation and wetland	
🔲 5 cm M	Mucky Peat or Pe	at (S3) ((LRR F)			(MLR	A 72 & 73	of LRR H)				ology must be present, unless disturbed or lematic.	
Restrictive	Layer (if present	t):									T		
Туре:													
Depth (Inche	es):										Hvd	ric Soils Present? Yes 🛛 No	
Remarks:													
HYDROLC	OGY												
Wetland Hy	drology Indicato	ors:											
Primary Indi	cators (minimum	of one r	equired;	check	all that	apply)					Secon	ndary Indicators (2 or more required)	
Surfa	ce Water (A1)					Salt Cr	ust (B11)					Surface Soil Cracks (B6)	
High \	Water Table (A2)					Aquatio	c Invertebr	ates (B13)				Sparsely Vegetated Concave Surface (B8)	
□ Satura	ation (A3)							e Odor (C1)				Drainage Patterns (B10)	
Water	r Marks (B1)					Dry Se	ason Wate	er Table (C2)				Oxidized Rhizospheres along Living Roots (C	3)
_	nent Deposits (B2	?)				Oxidize	ed Rhizosp	oheres along Liv	ving Roots	(C3)		(where tilled)	
	Deposits (B3)					(where	not tilled	I)	Ū	. ,		Crayfish Burrows (C8)	
_	Mat or Crust (B4)					-		uced Iron (C4)				Saturation Visible on Aerial Imagery (C9)	
	eposits (B5)						uck Surfac	. ,				Geomorphic Position (D2)	
	ation Visible on A	erial Im	aderv (B	7)				Remarks)				FAC-Neutral Test (D5)	
	er-Stained Leav			,		(P -	/				Frost-Heave Hummocks (D7) (LRR F)	
Field Obser			,										
Surface Wat		Yes		No	\boxtimes	De	pth (inche	s):					
Water Table		Yes		No			pth (inche	<i>.</i>					
Saturation P										M- 11-			
	pillary fringe)	Yes		No	\boxtimes	De	pth (inche	:S <i>)</i> :		vvetlan	a Hydr	ology Present? Yes 🗌 No	
Describe Re	ecorded Data (str	eam gai	uge, mor	nitoring	g well, a	erial pho	otos, previe	ous inspections	s), if availal	ole:			
Remarks:													

Project Site:	Black Rive	er Impou	undment Site			City/	/County:	Penningt	on	Sampling	Date:	<u>8-24-2</u>	2017
Applicant/Owner:	Houston E	Inginee	ring, Inc.					State:	MN	Sampling	Point:	<u>22w</u>	
Investigator(s):	Donna Jao	cob and	Mark D Aane	enson		Sect	tion, Township, F	Range:	<u>S5-T152N</u>	-R44W			
Landform (hillslope,	terrace, etc	:.): <u>d</u>	itch bottom		Loc	al relief (co	oncave, convex,	none):	<u>concave</u>		5	Slope (%	%): <u>1</u>
Subregion (LRR):	E		Lat: <u>48.0</u>	006670		Long:	-96.322177		I	Datum:	NAD19	<u>83</u>	
Soil Map Unit Name	: <u>Clearw</u>	ater da	Y						NWI class	sification:	Uplan	d	
Are climatic / hydrold	ogic conditi	ons on t	he site typica	al for this	time of year? Yes	🛛 No) 🗌 (lf no, e	explain in	Remarks.)				
Are Vegetation], Soil	X,	or Hydrology	y ⊠,	significantly disturbe	d? A	re "Normal Circu	umstances	s" present?	Yes	\boxtimes	No	
Are Vegetation], Soil	□,	or Hydrology	y □,	naturally problemation	:? (li	f needed, explai	n any ans	wers in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Pomarke:								
Wetland Hydrology Present?	Yes	\boxtimes	No	Is the Sampling Area within a Wetland?	Yes	\boxtimes	No	
Hydric Soil Present?	Yes	\boxtimes	No					
Hydrophytic Vegetation Present?	Yes	\boxtimes	No					

Remarks:

VEGETATION – Use scientific names of plant	ts			
Tree Stratum (Plot Size:)	Absolute <u>% Cover</u>	Dominant Species?	Indicator <u>Status</u>	Dominance Test Worksheet:
1 2				Number of Dominant Species That Are OBL, FACW, or FAC: (A)
3 4				Total Number of Dominant Species Across All Strata: (B)
Sapling/Shrub Stratum (Plot Size: 10' radius)		= Total Cove	ſ	Percent of Dominant Species That Are OBL, FACW, or FAC: (A/B)
1. Salix petiolaris	5	x	OBL	Prevalence Index worksheet:
2.				Total % Cover of: Multiply by:
3.				OBL species x1 =
4				FACW species x2 =
5				FAC species x3 =
	<u>5</u>	= Total Cove	r	FACU species x4 =
Herb Stratum (Plot Size: 5' radius)				UPL species x5 =
1. Carex pellita	<u>40</u>	X	<u>OBL</u>	Column Totals: (A) (B)
2. Typha sp.	<u>20</u>	X	<u>OBL</u>	Prevalence Index = B/A =
3. Calamagrostis stricta	<u>20</u>	x	FACW	Hydrophytic Vegetation Indicators:
4. Juncus balticus	<u>10</u>		FACW	<u>x</u> 1 – Rapid Test for Hydrophytic Vegetation
5. Carex atherodes	<u>5</u>		<u>OBL</u>	2 - Dominance Test is >50%
6. Lycopus virginicus	<u>5</u>		<u>OBL</u>	3 – Prevalence Index is ≤3.0 ¹
7 8				4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
9				Problematic Hydrophytic Vegetation ¹ (Explain)
10				¹ Indicators of hydric soil and wetland hydrology must be present,
	<u>100</u>	= Total Cove	r	unless disturbed or problematic.
Woody Vine Stratum (Plot Size:)				
1				
2				
		= Total Cove	r	
% Bare Ground in Herb Stratum				Hydrophytic Vegetation Present? Yes 🛛 No 🗌
Remarks:				

SOI	L								Sampling Point: 22w
Prof	file Description: (Describe to t	the depth nee	ded to docu	ument the	e indicato	r or confirm the	absence of ind	licators.)	
D	Depth Matrix				Redox F	eatures			
(incl	hes) Color (moist)	%	Color (Mo	ist)	%	Type ¹	Loc ²	Texture	e Remarks
9	0-13 <u>2.5Y 6/1</u>	<u>90</u>	<u>2.5Y 4/4</u>		10	<u>C</u>	M	CL	
_									
_									
_									
_									
_									
_									
_									
¹Тур	e: C= Concentration, D=Deple	tion, RM=Rec	duced Matri	x, CS=C	overed or	Coated Sand	Grains. ² Locat	ion: PL=Por	re Lining, M=Matrix
Hyd	ric Soil Indicators: (Applicable	e to all LRRs,	unless oth	erwise n	oted.)			Indic	cators for Problematic Hydric Soils ³ :
	Histosol (A1)			Sandy	Gleyed M	atrix (S4)			1 cm Muck (A9) (LRR I, J)
	Histic Epipedon (A2)			Sandy	Redox (S	5)			Coast Prairie Redox (A16) (LRR F, G, H)
	Black Histic (A3)			Strippe	d Matrix (S6)			Dark Surface (S7) (LRR G)
	Hydrogen Sulfide (A4)			Loamy	Mucky Mi	ineral (F1)			High Plains Depressions (F16)
	Stratified Layers (A5) (LRR F	-)		Loamy	Gleyed M	latrix (F2)			(LRR H outside of MLRA 72 & 73)
	1 cm Muck (A9) (LRR F, G, I	H)	\boxtimes	Deplete	ed Matrix	(F3)			Reduced Vertic (F18)
	Depleted Below Dark Surface	e (A11)		Redox	Dark Surf	ace (F6)			Red Parent Material (TF2)
	Thick Dark Surface (A12)			•		urface (F7)			Very Shallow Dark Surface (TF 12)
	Sandy Mucky Mineral (S1)				Depressio				Other (Explain in Remarks)
	2.5 CM Mucky Peat or Peat (H) 🗆	High Pl	ains Depr	ressions (F16)			cators of hydrophytic vegetation and wetland ology must be present, unless disturbed or
	5 cm Mucky Peat or Peat (S	3) (LRR F)		(MLR/	A 72 & 73	of LRR H)			lematic.
Rest	trictive Layer (if present):								
Туре									
Dept	th (Inches):							Hydr	ric Soils Present? Yes 🛛 No 🗌
Rem	narks:								
HY	DROLOGY								

Wet	and Hydrology Indica	tors:											
Prim	ary Indicators (minimur	n of one r	equired	; check	all tha	t apply)		Sec	ondary Indicators (2	or more	required	ł)	
	Surface Water (A1)					Salt Crust (B11)			Surface Soil Crack	(B6)			
	High Water Table (A2	2)				Aquatic Invertebrates (B13)			Sparsely Vegetate	d Conca	ve Surfa	ace (B8)	
	Saturation (A3)					Hydrogen Sulfide Odor (C1)			Drainage Patterns	(B10)			
	Water Marks (B1)					Dry Season Water Table (C2)			Oxidized Rhizosph	neres alo	ng Livin	g Roots (C3)
	Sediment Deposits (E	32)				Oxidized Rhizospheres along Living Ro	oots (C3)		(where tilled)				
	Drift Deposits (B3)					(where not tilled)			Crayfish Burrows (C8)			
	Algal Mat or Crust (B	4)				Presence of Reduced Iron (C4)			Saturation Visible	on Aeria	I Imager	y (C9)	
	Iron Deposits (B5)					Thin Muck Surface (C7)		\boxtimes	Geomorphic Positi	on (D2)			
	Inundation Visible on	Aerial Im	agery (I	B7)		Other (Explain in Remarks)		\boxtimes	FAC-Neutral Test	(D5)			
	Water-Stained Lea	aves (B9)						Frost-Heave Humr	nocks (E	07) (LRF	R F)	
Field	Observations:												
Surfa	ace Water Present?	Yes		No	\boxtimes	Depth (inches):							
Wate	er Table Present?	Yes		No	\boxtimes	Depth (inches):							
	ration Present? udes capillary fringe)	Yes		No	\boxtimes	Depth (inches):	Wetla	nd Hy	drology Present?	Yes	\boxtimes	No	
Desc	cribe Recorded Data (s	tream ga	uge, mo	onitoring	g well,	aerial photos, previous inspections), if ava	ailable:						
Ren	narks:												

Project Site:	Black F	River Impor	undment Site	2		City	/County:	Penningt	on	Sampling	Date:	<u>8-24-2</u>	2017
Applicant/Owner:	Housto	n Enginee	ring, Inc.					State:	MN	Sampling	Point:	<u>24u</u>	
Investigator(s):	Donna	Jacob and	Mark D Aan	enson		Sec	tion, Township, I	Range:	<u>S4-T152N</u>	-R45W			
Landform (hillslope,	terrace,	etc.): <u>d</u>	litch slope		Loc	al relief (c	oncave, convex,	none):	none		S	lope (%	%): <u>5</u>
Subregion (LRR):	E		Lat: <u>48</u>	3.006912		Long:	-96.429102			Datum: I	NAD198	33	
Soil Map Unit Name	: <u>Bor</u>	up loam							NWI class	sification:	Uplan	<u>d</u>	
Are climatic / hydrold	ogic con	ditions on	the site typica	al for this t	time of year? Yes	🛛 No	o 🔲 (lf no, e	explain in	Remarks.)				
Are Vegetation], Soi	il ⊠,	or Hydrolog	ıy ⊠,	significantly disturbe	d? A	re "Normal Circu	umstances	s" present?	Yes	\boxtimes	No	
Are Vegetation], Soi	il □,	or Hydrolog	ıy □,	naturally problemati	c? (I	lf needed, explai	n any ans	wers in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Remarke:								
Wetland Hydrology Present?	Yes		No	\boxtimes	Is the Sampling Area within a Wetland?	Yes	No	\bowtie
Hydric Soil Present?	Yes	\boxtimes	No					
Hydrophytic Vegetation Present?	Yes		No	\boxtimes				

Remarks:

Tree Stratum (Plot Size:)	Absolute <u>% Cover</u>	Dominant Species?	Indicator <u>Status</u>	Dominance Test V	Norksheet:				
1 2				Number of Domina That Are OBL, FAC		<u>0</u>	(A)		
3 4				Total Number of De Species Across All		<u>2</u>	(B)		
Sapling/Shrub Stratum (Plot Size:)		= Total Cove	er	Percent of Domina That Are OBL, FAC		<u>0</u>	(A/B)		
1				Prevalence Index	worksheet:				
2				Total % Cov	ver of:	Multiply	/ by:		
3				OBL species	<u>o</u>	x1 =	<u>0</u>		
4				FACW species	<u>25</u>	x2 =	<u>50</u>		
5				FAC species	<u>0</u>	x3 =	<u>0</u>		
		= Total Cove	er	FACU species	<u>70</u>	x4 =	<u>280</u>		
Herb Stratum (Plot Size: 5' radius)				UPL species	<u>0</u>	x5 =	<u>0</u>		
1. Melilotus officinalis	<u>40</u>	x	FACU	Column Totals:	<u>95</u>	(A)	<u>330</u>	(B)	
2. Elymus repens	<u>20</u>	x	FACU		Prevalence	Index = B	/A = <u>3.5</u>		
3. Spartina pectinata	<u>10</u>		FACW	Hydrophytic Vege	etation Indica	tors:			
4. Ambrosia artemisiifolia	<u>10</u>		FACU	1 – Raj	pid Test for Hy	/drophytic	Vegetation	ı	
5. Agrostis gigantea	<u>10</u>		FACW	2 - Don	ninance Test i	s >50%			
6. Agrostis stolonifera	<u>5</u>		FACW	3 – Pre	valence Index	is ≤3.0¹			
7				4 Mor	phological Ad	antations	(Provide e		data in
8					marks or on a			upporting	
9				Probler	matic Hydroph	ytic Vege	tation ¹ (Exp	olain)	
10				¹ Indicators of hydri	c soil and wet	land hydro	ology must	be present	i,
	<u>95</u>	= Total Cove	er	unless disturbed or		,	0,	•	,
Woody Vine Stratum (Plot Size:)									
1									
2									
		= Total Cove	er						
% Bare Ground in Herb Stratum 5				Hydrophytic Vege	etation Prese	nt? Y	es 🗌	No	\boxtimes
Remarks:									
									,

SOI	IL									Sampling Point: 24u	
Prof	file Descri	iption: (Describe to	o the depth nee	eded to doci	ument the indi	cator or conf	firm the a	bsence of inc	licators.)		
C	Depth	Matrix			Red	lox Features	i		_		
(inc	hes)	Color (moist)	%	Color (Mo	ist) %	Ту	∕pe¹	Loc ²	 Texture	e Remarks	
	<u>0-6</u>	<u>2.5Y 2/1</u>	100						<u>SL</u>		
	6-14	<u>2.5Y 7/2</u>	<u>90</u>	<u>2.5Y 5/4</u>	<u>10</u>		<u>2</u>	M	FS		
-											
-											
-											
-											
-											
-											
¹Тур	e: C= Cor	ncentration, D=Dep	pletion, RM=Re	duced Matri	x, CS=Covere	ed or Coated	Sand Gr	ains. ² Locat	ion: PL=Por	e Lining, M=Matrix	
Hyd	ric Soil In	dicators: (Applica	ble to all LRRs,	, unless oth	erwise noted.))			Indic	cators for Problematic Hydric Soils ³ :	
	Histosol	(A1)			Sandy Gleye	ed Matrix (S4)			1 cm Muck (A9) (LRR I, J)	
	Histic Ep	pipedon (A2)			Sandy Redo	x (S5)				Coast Prairie Redox (A16) (LRR F, G, H)	
	Black Hi	stic (A3)			Stripped Mat	trix (S6)				Dark Surface (S7) (LRR G)	
	Hydroge	en Sulfide (A4)			Loamy Muck	y Mineral (F	1)			High Plains Depressions (F16)	
	Stratified	d Layers (A5) (LRF	R F)		Loamy Gleye	ed Matrix (F2	2)			(LRR H outside of MLRA 72 & 73)	
	1 cm Mu	ıck (A9) (LRR F, G	6, H)		Depleted Ma	trix (F3)				Reduced Vertic (F18)	
\boxtimes	Deplete	d Below Dark Surfa	ace (A11)		Redox Dark	Surface (F6))			Red Parent Material (TF2)	
	Thick Da	ark Surface (A12)			Depleted Da	rk Surface (F	-7)			Very Shallow Dark Surface (TF 12)	
	Sandy N	lucky Mineral (S1)	1		Redox Depre	essions (F8)				Other (Explain in Remarks)	
	2.5 CM	Mucky Peat or Pea	at (S2)(LRR G,	H) 🗆	High Plains [Depressions	(F16)			cators of hydrophytic vegetation and wetland ology must be present, unless disturbed or	
	5 cm Mu	icky Peat or Peat ((S3) (LRR F)		(MLRA 72	& 73 of LRR	: H)			lematic.	
Res	trictive La	ayer (if present):									
Туре	e:										
Dep	th (Inches):							Hydr	ric Soils Present? Yes 🛛 No	
Rem	narks:										
HY	DROLOG	βY									

Wetla	and Hydrology Indicat	tors:												
Prima	ary Indicators (minimun	n of one r	equired	; check	all tha	it apply)		5	Seco	ondary Indicators (2	or more	required)	
	Surface Water (A1)					Salt Crust (B11)				Surface Soil Crack	ks (B6)			
	High Water Table (A2	2)				Aquatic Invertebrates (B13)		[Sparsely Vegetate	ed Conca	ave Surfa	ce (B8)	
	Saturation (A3)					Hydrogen Sulfide Odor (C1)		[Drainage Patterns	s (B10)			
	Water Marks (B1)					Dry Season Water Table (C2)		[Oxidized Rhizospl	heres ald	ong Living	g Roots (C3)
	Sediment Deposits (E	32)				Oxidized Rhizospheres along Living Ro	Roots (0	C3)		(where tilled)				
	Drift Deposits (B3)					(where not tilled)		[Crayfish Burrows	(C8)			
	Algal Mat or Crust (B4	4)				Presence of Reduced Iron (C4)		[Saturation Visible	on Aeria	I Imager	y (C9)	
	Iron Deposits (B5)					Thin Muck Surface (C7)		[Geomorphic Posit	ion (D2)			
	Inundation Visible on	Aerial Im	agery (I	B7)		Other (Explain in Remarks)		[FAC-Neutral Test	(D5)			
	Water-Stained Lea	ves (B9)					[Frost-Heave Hum	mocks (l	D7) (LRR	F)	
Field	Observations:													
Surfa	ce Water Present?	Yes		No	\boxtimes	Depth (inches):								
Wate	r Table Present?	Yes		No	\boxtimes	Depth (inches):								
1	ation Present? des capillary fringe)	Yes		No	\boxtimes	Depth (inches):	v	Vetland	Нус	trology Present?	Yes		No	
Desc	ribe Recorded Data (s	tream gai	uge, mo	onitoring	g well,	aerial photos, previous inspections), if av	vailable	e:						
Rem	arks:													

Project Site:	Black R	iver Impou	undment Sit	te		City/	County:	Penningt	on	Sampling	Date:	<u>8-24-2</u>	2017
Applicant/Owner:	Houstor	n Engineer	ring, Inc.					State:	MN	Sampling	Point:	<u>24w</u>	
Investigator(s):	Donna .	Jacob and	Mark D Aa	nenson		Sect	tion, Township, F	Range:	<u>S4-T152N</u>	-R45W			
Landform (hillslope,	terrace,	etc.): <u>d</u>	itch bottom		Loc	al relief (co	oncave, convex,	none):	<u>concave</u>		S	Slope (%	%): <u>1</u>
Subregion (LRR):	E		Lat: 48	8.006919		Long:	-96.429223			Datum: <u>I</u>	NAD19	<u>83</u>	
Soil Map Unit Name	: <u>Borı</u>	up loam							NWI class	sification:	<u>Uplan</u>	<u>d</u>	
Are climatic / hydrold	ogic cond	ditions on t	he site typic	cal for this t	time of year? Yes	🖾 No	🔲 (lf no, e	explain in	Remarks.)				
Are Vegetation], Soi	⊠,	or Hydrolo	gy ⊠,	significantly disturbe	d? Ar	re "Normal Circu	umstances	s" present?	Yes	\boxtimes	No	
Are Vegetation], Soi	□,	or Hydrolo	gy □,	naturally problemation	;? (If	f needed, explai	n any ans	wers in Re	marks.)			

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Bomarka:								
Wetland Hydrology Present?	Yes	\boxtimes	No	Is the Sampling Area within a Wetland?	Yes	\boxtimes	No	
Hydric Soil Present?	Yes	\boxtimes	No					
Hydrophytic Vegetation Present?	Yes	\boxtimes	No					

Remarks:

VEGETATION – Use scientific names of plant	S			
Tree Stratum (Plot Size:)	Absolute <u>% Cover</u>	Dominant Species?	Indicator <u>Status</u>	Dominance Test Worksheet:
1 2				Number of Dominant Species That Are OBL, FACW, or FAC: $\underline{3}$ (A)
3 4				Total Number of Dominant Species Across All Strata: <u>4</u> (B)
Sapling/Shrub Stratum (Plot Size: 10' radius)		= Total Cove	r	Percent of Dominant Species That Are OBL, FACW, or FAC: 75 (A/B)
1. <u>Salix petiolaris</u>	<u>5</u>	x	<u>OBL</u>	Prevalence Index worksheet:
2				Total % Cover of: Multiply by:
3				OBL species x1 =
4				FACW species x2 =
5				FAC species x3 =
	<u>5</u>	= Total Cove	r	FACU species x4 =
Herb Stratum (Plot Size: 5' radius)				UPL species x5 =
1. Agrostis stolonifera	<u>30</u>	x	FACW	Column Totals: (A) (B)
2. Spartina pectinata	<u>30</u>	x	FACW	Prevalence Index = B/A =
3. Melilotus officinalis	<u>20</u>	x	FACU	Hydrophytic Vegetation Indicators:
4. Symphyotrichum puniceum	<u>5</u>		<u>OBL</u>	1 – Rapid Test for Hydrophytic Vegetation
5. Trifolium hybridum	<u>5</u>		FACU	x 2 - Dominance Test is >50%
6				3 – Prevalence Index is ≤3.0 ¹
7				4 - Morphological Adaptations ¹ (Provide supporting data in
8				Remarks or on a separate sheet)
9				Problematic Hydrophytic Vegetation ¹ (Explain)
10				¹ Indicators of hydric soil and wetland hydrology must be present,
	<u>90</u>	= Total Cove	r	unless disturbed or problematic.
Woody Vine Stratum (Plot Size:)				
1				
2				
		= Total Cove	r	
% Bare Ground in Herb Stratum 10				Hydrophytic Vegetation Present? Yes 🛛 No 🗌
Remarks:				

	uie depuiri		cument the indicator	r or confirm the	absence of inc	dicators.)					
Depth Matrix			Redox F	eatures		_					
Color (moist)	%	Color (Mo	oist) %	Type ¹	Loc ²	Texture	Remarks				
<u>0-8</u> <u>2.5Y 2/1</u> <u>100</u>						<u>SL</u>					
<u>8-16</u> <u>2.5Y 7/2</u> <u>90</u>		<u>2.5Y 5/</u>	<u>4 10</u>	<u>C</u>	<u>M</u>	<u>FS</u>					
<i>,</i> 1	,		,	Coated Sand G	Grains. ² Locat		e Lining, M=Matrix ators for Problematic Hydric Soils ³ :				
ol (A1)			Sandy Gleyed M	atrix (S4)		1 cm Muck (A9) (LRR I, J)					
Epipedon (A2)			Sandy Redox (St	5)			Coast Prairie Redox (A16) (LRR F, G, H				
listic (A3)			Stripped Matrix (S6)			Dark Surface (S7) (LRR G)				
en Sulfide (A4)			Loamy Mucky Mi	neral (F1)			High Plains Depressions (F16)				
ed Layers (A5) (LRR	(F)		Loamy Gleyed M	atrix (F2)		(LRR H outside of MLRA 72 & 73)					
luck (A9) (LRR F, G	, H)		Depleted Matrix ((F3)			Reduced Vertic (F18)				
ed Below Dark Surfa	ice (A11)		Redox Dark Surf	ace (F6)			Red Parent Material (TF2)				
Thick Dark Surface (A12)			Depleted Dark Si	urface (F7)			Very Shallow Dark Surface (TF 12)				
Mucky Mineral (S1)			Redox Depression	ons (F8)			Other (Explain in Remarks)				
2.5 CM Mucky Peat or Peat (S2)(LRR G, H)			High Plains Depr	essions (F16)			cators of hydrophytic vegetation and wetland plogy must be present, unless disturbed or				
lucky Peat or Peat (S3) (LRR F)		(MLRA 72 & 73	of LRR H)			ematic.				
ayer (if present):											
Depth (Inches):							Hydric Soils Present? Yes 🛛 No				
	Color (moist) 2.5Y 2/1 2.5Y 7/2 	Color (moist) % 2.5Y 2/1 100 2.5Y 7/2 90	Color (moist) % Color (Moist) 2.5Y 2/1 100	Color (moist) % 2.5Y 2/1 100	Color (moist) % Type1 2.5Y 2/1 100	Color (moist) % Type¹ Loc² 2.5Y 2/1 100	Color (moist) % Color (Moist) % Type1 Loc2 Texture 2.5Y 2/1 100				

Wetla	Wetland Hydrology Indicators:													
Primary Indicators (minimum of one required; check all that apply)								Secondary Indicators (2 or more required)						
	Surface Water (A1)					Salt Crust (B11)			Surface Soil Crack	ks (B6)				
	High Water Table (A2)				Aquatic Invertebrates (B13)			Sparsely Vegetated Concave Surface (B8)						
	Saturation (A3)				Hydrogen Sulfide Odor (C1)			Drainage Patterns (B10)						
	Water Marks (B1)				Dry Season Water Table (C2)			Oxidized Rhizospheres along Living Roots (C3)						
Sediment Deposits (B2)				Oxidized Rhizospheres along Living Roots (C3) (where tilled)										
	Drift Deposits (B3)					(where not tilled)			Crayfish Burrows	(C8)				
	Algal Mat or Crust (B4)				Presence of Reduced Iron (C4)	Saturation Visible on Aerial Imager			(C9)					
	Iron Deposits (B5)				Thin Muck Surface (C7)		\boxtimes	Geomorphic Position (D2)						
	Inundation Visible on Aerial Imagery (B7)					Other (Explain in Remarks)								
□ Water-Stained Leaves (B9)						Frost-Heave Hummocks (D7) (LRR F)			F)					
Field Observations:														
Surfa	ce Water Present?	Yes		No	\boxtimes	Depth (inches):								
Wate	r Table Present?	Yes		No	\boxtimes	Depth (inches):								
	ation Present? des capillary fringe)	Yes		No	\boxtimes	Depth (inches):	Wetlan	d Hy	drology Present?	Yes		No		
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:														
Remarks:														